No Arabic abstract
We present two new non-parametric methods for quantifying galaxy morphology: the relative distribution of the galaxy pixel flux values (the Gini coefficient or G) and the second-order moment of the brightest 20% of the galaxys flux (M20). We test the robustness of G and M20 to decreasing signal-to-noise and spatial resolution, and find that both measures are reliable to within 10% at average signal-to-noise per pixel greater than 3 and resolutions better than 1000 pc and 500 pc, respectively. We have measured G and M20, as well as concentration (C), asymmetry (A), and clumpiness (S) in the rest-frame near-ultraviolet/optical wavelengths for 150 bright local normal Hubble type galaxies (E-Sd) galaxies and 104 0.05 < z < 0.25 ultra-luminous infrared galaxies (ULIRGs).We find that most local galaxies follow a tight sequence in G-M20-C, where early-types have high G and C and low M20 and late-type spirals have lower G and C and higher M20. The majority of ULIRGs lie above the normal galaxy G-M20 sequence, due to their high G and M20 values. Their high Gini coefficients arise from very bright nuclei, while the high second-order moments are produced by multiple nuclei and bright tidal tails. All of these features are signatures of recent and on-going mergers and interactions. We also find that in combination with A and S, G is more effective than C at distinguishing ULIRGs from the normal Hubble-types. Finally, we measure the morphologies of 45 1.7 < z < 3.8 galaxies from HST NICMOS observations of the Hubble Deep Field North. We find that many of the z $sim$ 2 galaxies possess G and A higher than expected from degraded images of local elliptical and spiral galaxies, and have morphologies more like low-redshift single nucleus ULIRGs.
Machine Learning classification models learn the relation between input as features and output as a class in order to predict the class for the new given input. Quantum Mechanics (QM) has already shown its effectiveness in many fields and researchers have proposed several interesting results which cannot be obtained through classical theory. In recent years, researchers have been trying to investigate whether the QM can help to improve the classical machine learning algorithms. It is believed that the theory of QM may also inspire an effective algorithm if it is implemented properly. From this inspiration, we propose the quantum-inspired binary classifier.
We present a new approach to describe hydrodynamics carrying non-Abelian macroscopic degrees of freedom. Based on the Kaluza-Klein compactification of a higher-dimensional neutral dissipative fluid on a group manifold, we obtain a d=4 colored dissipative fluid coupled to Yang-Mills gauge field. We calculate the transport coefficients of the new fluid, which show the non-Abelian character of the gauge group. In particular, we obtain group-valued terms in the gradient expansions and response quantities such as the conductivity matrix and the chemical potentials. While using SU(2) for simplicity, this approach is applicable to any gauge group. Resulting a robust description of non-Abelian hydrodynamics, we discuss some links between this system and quark-gluon plasma and fluid/gravity duality.
We provide a brief overview of the Galaxy Zoo and Zooniverse projects, including a short discussion of the history of, and motivation for, these projects as well as reviewing the science these innovative internet-based citizen science projects have produced so far. We briefly describe the method of applying en-masse human pattern recognition capabilities to complex data in data-intensive research. We also provide a discussion of the lessons learned from developing and running these community--based projects including thoughts on future applications of this methodology. This review is intended to give the reader a quick and simple introduction to the Zooniverse.
We present an extended morphometric system to automatically classify galaxies from astronomical images. The new system includes the original and modifie
Time-varying mixture densities occur in many scenarios, for example, the distributions of keywords that appear in publications may evolve from year to year, video frame features associated with multiple targets may evolve in a sequence. Any models that realistically cater to this phenomenon must exhibit two important properties: the underlying mixture densities must have an unknown number of mixtures, and there must be some smoothness constraints in place for the adjacent mixture densities. The traditional Hierarchical Dirichlet Process (HDP) may be suited to the first property, but certainly not the second. This is due to how each random measure in the lower hierarchies is sampled independent of each other and hence does not facilitate any temporal correlations. To overcome such shortcomings, we proposed a new Smoothed Hierarchical Dirichlet Process (sHDP). The key novelty of this model is that we place a temporal constraint amongst the nearby discrete measures ${G_j}$ in the form of symmetric Kullback-Leibler (KL) Divergence with a fixed bound $B$. Although the constraint we place only involves a single scalar value, it nonetheless allows for flexibility in the corresponding successive measures. Remarkably, it also led us to infer the model within the stick-breaking process where the traditional Beta distribution used in stick-breaking is now replaced by a new constraint calculated from $B$. We present the inference algorithm and elaborate on its solutions. Our experiment using NIPS keywords has shown the desirable effect of the model.