Do you want to publish a course? Click here

Low-density locality-sensitive hashing boosts metagenomic binning

131   0   0.0 ( 0 )
 Added by Yunan Luo
 Publication date 2016
  fields Biology
and research's language is English




Ask ChatGPT about the research

Metagenomic binning is an essential task in analyzing metagenomic sequence datasets. To analyze structure or function of microbial communities from environmental samples, metagenomic sequence fragments are assigned to their taxonomic origins. Although sequence alignment algorithms can readily be used and usually provide high-resolution alignments and accurate binning results, the computational cost of such alignment-based methods becomes prohibitive as metagenomic datasets continue to grow. Alternative compositional-based methods, which exploit sequence composition by profiling local short k-mers in fragments, are often faster but less accurate than alignment-based methods. Inspired by the success of linear error correcting codes in noisy channel communication, we introduce Opal, a fast and accurate novel compositional-based binning method. It incorporates ideas from Gallagers low-density parity-check code to design a family of compact and discriminative locality-sensitive hashing functions that encode long-range compositional dependencies in long fragments. By incorporating the Gallager LSH functions as features in a simple linear SVM, Opal provides fast, accurate and robust binning for datasets consisting of a large number of species, even with mutations and sequencing errors. Opal not only performs up to two orders of magnitude faster than BWA, an alignment-based binning method, but also achieves improved binning accuracy and robustness to sequencing errors. Opal also outperforms models built on traditional k-mer profiles in terms of robustness and accuracy. Finally, we demonstrate that we can effectively use Opal in the coarse search stage of a compressive genomics pipeline to identify a much smaller candidate set of taxonomic origins for a subsequent alignment-based method to analyze, thus providing metagenomic binning with high scalability, high accuracy and high resolution.



rate research

Read More

Extended differential privacy, a generalization of standard differential privacy (DP) using a general metric, has been widely studied to provide rigorous privacy guarantees while keeping high utility. However, existing works on extended DP are limited to few metrics, such as the Euclidean metric. Consequently, they have only a small number of applications, such as location-based services and document processing. In this paper, we propose a couple of mechanisms providing extended DP with a different metric: angular distance (or cosine distance). Our mechanisms are based on locality sensitive hashing (LSH), which can be applied to the angular distance and work well for personal data in a high-dimensional space. We theoretically analyze the privacy properties of our mechanisms, and prove extended DP for input data by taking into account that LSH preserves the original metric only approximately. We apply our mechanisms to friend matching based on high-dimensional personal data with angular distance in the local model, and evaluate our mechanisms using two real datasets. We show that LDP requires a very large privacy budget and that RAPPOR does not work in this application. Then we show that our mechanisms enable friend matching with high utility and rigorous privacy guarantees based on extended DP.
119 - Haim Kaplan , Jay Tenenbaum 2021
Locality Sensitive Hashing (LSH) is an effective method of indexing a set of items to support efficient nearest neighbors queries in high-dimensional spaces. The basic idea of LSH is that similar items should produce hash collisions with higher probability than dissimilar items. We study LSH for (not necessarily convex) polygons, and use it to give efficient data structures for similar shape retrieval. Arkin et al. represent polygons by their turning function - a function which follows the angle between the polygons tangent and the $ x $-axis while traversing the perimeter of the polygon. They define the distance between polygons to be variations of the $ L_p $ (for $p=1,2$) distance between their turning functions. This metric is invariant under translation, rotation and scaling (and the selection of the initial point on the perimeter) and therefore models well the intuitive notion of shape resemblance. We develop and analyze LSH near neighbor data structures for several variations of the $ L_p $ distance for functions (for $p=1,2$). By applying our schemes to the turning functions of a collection of polygons we obtain efficient near neighbor LSH-based structures for polygons. To tune our structures to turning functions of polygons, we prove some new properties of these turning functions that may be of independent interest. As part of our analysis, we address the following problem which is of independent interest. Find the vertical translation of a function $ f $ that is closest in $ L_1 $ distance to a function $ g $. We prove tight bounds on the approximation guarantee obtained by the translation which is equal to the difference between the averages of $ g $ and $ f $.
Because biological processes can make different loci have different evolutionary histories, species tree estimation requires multiple loci from across the genome. While many processes can result in discord between gene trees and species trees, incomplete lineage sorting (ILS), modeled by the multi-species coalescent, is considered to be a dominant cause for gene tree heterogeneity. Coalescent-based methods have been developed to estimate species trees, many of which operate by combining estimated gene trees, and so are called summary methods. Because summary methods are generally fast, they have become very popular techniques for estimating species trees from multiple loci. However, recent studies have established that summary methods can have reduced accuracy in the presence of gene tree estimation error, and also that many biological datasets have substantial gene tree estimation error, so that summary methods may not be highly accurate on biologically realistic conditions. Mirarab et al. (Science 2014) presented the statistical binning technique to improve gene tree estimation in multi-locus analyses, and showed that it improved the accuracy of MP-EST, one of the most popular coalescent-based summary methods. Statistical binning, which uses a simple statistical test for combinability and then uses the larger sets of genes to re-calculate gene trees, has good empirical performance, but using statistical binning within a phylogenomics pipeline does not have the desirable property of being statistically consistent. We show that weighting the recalculated gene trees by the bin sizes makes statistical binning statistically consistent under the multispecies coalescent, and maintains the good empirical performance. Thus, weighted statistical binning enables highly accurate genome-scale species tree estimation, and is also statistical consistent under the multi-species coalescent model.
We present the first provable Least-Squares Value Iteration (LSVI) algorithms that have runtime complexity sublinear in the number of actions. We formulate the value function estimation procedure in value iteration as an approximate maximum inner product search problem and propose a locality sensitive hashing (LSH) [Indyk and Motwani STOC98, Andoni and Razenshteyn STOC15, Andoni, Laarhoven, Razenshteyn and Waingarten SODA17] type data structure to solve this problem with sublinear time complexity. Moreover, we build the connections between the theory of approximate maximum inner product search and the regret analysis of reinforcement learning. We prove that, with our choice of approximation factor, our Sublinear LSVI algorithms maintain the same regret as the original LSVI algorithms while reducing the runtime complexity to sublinear in the number of actions. To the best of our knowledge, this is the first work that combines LSH with reinforcement learning resulting in provable improvements. We hope that our novel way of combining data-structures and iterative algorithm will open the door for further study into cost reduction in optimization.
Human associated microbial communities exert tremendous influence over human health and disease. With modern metagenomic sequencing methods it is possible to follow the relative abundance of microbes in a community over time. These microbial communities exhibit rich ecological dynamics and an important goal of microbial ecology is to infer the interactions between species from sequence data. Any algorithm for inferring species interactions must overcome three obstacles: 1) a correlation between the abundances of two species does not imply that those species are interacting, 2) the sum constraint on the relative abundances obtained from metagenomic studies makes it difficult to infer the parameters in timeseries models, and 3) errors due to experimental uncertainty, or mis-assignment of sequencing reads into operational taxonomic units, bias inferences of species interactions. Here we introduce an approach, Learning Interactions from MIcrobial Time Series (LIMITS), that overcomes these obstacles. LIMITS uses sparse linear regression with boostrap aggregation to infer a discrete-time Lotka-Volterra model for microbial dynamics. We tested LIMITS on synthetic data and showed that it could reliably infer the topology of the inter-species ecological interactions. We then used LIMITS to characterize the species interactions in the gut microbiomes of two individuals and found that the interaction networks varied significantly between individuals. Furthermore, we found that the interaction networks of the two individuals are dominated by distinct keystone species, Bacteroides fragilis and Bacteroided stercosis, that have a disproportionate influence on the structure of the gut microbiome even though they are only found in moderate abundance. Based on our results, we hypothesize that the abundances of certain keystone species may be responsible for individuality in the human gut microbiome.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا