Do you want to publish a course? Click here

Modeling QoE of Video Streaming in Wireless Networks with Large-Scale Measurement of User Behavior

106   0   0.0 ( 0 )
 Added by Yuedong Xu
 Publication date 2016
and research's language is English




Ask ChatGPT about the research

Unraveling quality of experience (QoE) of video streaming is very challenging in bandwidth shared wireless networks. It is unclear how QoE metrics such as starvation probability and buffering time interact with dynamics of streaming traffic load. In this paper, we collect view records from one of the largest streaming providers in China over two weeks and perform an in-depth measurement study on flow arrival and viewing time that shed light on the real traffic pattern. Our most important observation is that the viewing time of streaming users fits a hyper-exponential distribution quite well. This implies that all the views can be categorized into two classes, short and long views with separated time scales. We then map the measured traffic pattern to bandwidth shared cellular networks and propose an analytical framework to compute the closed-form starvation probability on the basis of ordinary differential equations (ODEs). Our framework can be naturally extended to investigate practical issues including the progressive downloading and the finite video duration. Extensive trace-driven simulations validate the accuracy of our models. Our study reveals that the starvation metrics of the short and long views possess different sensitivities to the scheduling priority at base station. Hence, a better QoE tradeoff between the short and long views has a potential to be leveraged by offering them different scheduling weights. The flow differentiation involves tremendous technical and non-technical challenges because video content is owned by content providers but not the network operators and the viewing time of each session is unknown beforehand. To overcome these difficulties, we propose an online Bayesian approach to infer the viewing time of each incoming flow with the least information from content providers.



rate research

Read More

Bandwidth requirements of both wireless and wired clients in access networks continue to increase rapidly, primarily due to the growth of video traffic. Application awareness can be utilized in access networks to optimize quality of experience (QoE) of end clients. In this study, we utilize information at the client-side application (e.g., video resolution) to achieve superior resource allocation that improves user QoE. We emphasize optimizing QoE of the system rather than quality of service (QoS), as user satisfaction directly relies on QoE and optimizing QoS does not necessarily optimize QoE, as shown in this study. We propose application-aware resource-allocation schemes on an Ethernet passive optical network (EPON), which supports wireless (utilizing orthogonal frequency division multiple access) and wired clients running video-conference applications. Numerical results show that the application-aware resource-allocation schemes improve QoE for video-conference applications for wired and wireless clients.
Intelligent and autonomous troubleshooting is a crucial enabler for the current 5G and future 6G networks. In this work, we develop a flexible architecture for detecting anomalies in adaptive video streaming comprising three main components: i) A pattern recognizer that learns a typical pattern for video quality from the client-side application traces of a specific reference video, ii) A predictor for mapping Radio Frequency (RF) performance indicators collected on the network-side using user-based traces to a video quality measure, iii) An anomaly detector for comparing the predicted video quality pattern with the typical pattern to identify anomalies. We use real network traces (i.e., on-device measurements) collected in different geographical locations and at various times of day to train our machine learning models. We perform extensive numerical analysis to demonstrate key parameters impacting correct video quality prediction and anomaly detection. In particular, we have shown that the video playback time is the most crucial parameter determining the video quality since buffering continues during the playback and resulting in better video quality further into the playback. However, we also reveal that RF performance indicators characterizing the quality of the cellular connectivity are required to correctly predict QoE in anomalous cases. Then, we have exhibited that the mean maximum F1-score of our method is 77%, verifying the efficacy of our models. Our architecture is flexible and autonomous, so one can apply it to -- and operate with -- other user applications as long as the relevant user-based traces are available.
We provide in this paper a tutorial and a comprehensive survey of QoE management solutions in current and future networks. We start with a high level description of QoE management for multimedia services, which integrates QoE modelling, monitoring, and optimization. This followed by a discussion of HTTP Adaptive Streaming (HAS) solutions as the dominant technique for streaming videos over the best-effort Internet. We then summarize the key elements in SDN/NFV along with an overview of ongoing research projects, standardization activities and use cases related to SDN, NFV, and other emerging applications. We provide a survey of the state-of-the-art of QoE management techniques categorized into three different groups: a) QoE-aware/driven strategies using SDN and/or NFV; b) QoE-aware/driven approaches for adaptive streaming over emerging architectures such as multi-access edge computing, cloud/fog computing, and information-centric networking; and c) extended QoE management approaches in new domains such as immersive augmented and virtual reality, mulsemedia and video gaming applications. Based on the review, we present a list of identified future QoE management challenges regarding emerging multimedia applications, network management and orchestration, network slicing and collaborative service management in softwarized networks. Finally, we provide a discussion on future research directions with a focus on emerging research areas in QoE management, such as QoE-oriented business models, QoE-based big data strategies, and scalability issues in QoE optimization.
Many of the video streaming applications in todays Internet involve the distribution of content from a CDN source to a large population of interested clients. However, widespread support of IP multicast is unavailable due to technical and economical reasons, leaving the floor to application layer multicast which introduces excessive delays for the clients and increased traffic load for the network. This paper is concerned with the introduction of an SDN-based framework that allows the network controller to not only deploy IP multicast between a source and subscribers, but also control, via a simple northbound interface, the distributed set of sources where multiple- description coded (MDC) video content is available. We observe that for medium to heavy network loads, relative to the state-of-the-art, the SDN-based streaming multicast video framework increases the PSNR of the received video significantly, from a level that is practically unwatchable to one that has good quality.
Urban LoRa networks promise to provide a cost-efficient and scalable communication backbone for smart cities. One core challenge in rolling out and operating these networks is radio network planning, i.e., precise predictions about possible new locations and their impact on network coverage. Path loss models aid in this task, but evaluating and comparing different models requires a sufficiently large set of high-quality received packet power samples. In this paper, we report on a corresponding large-scale measurement study covering an urban area of 200km2 over a period of 230 days using sensors deployed on garbage trucks, resulting in more than 112 thousand high-quality samples for received packet power. Using this data, we compare eleven previously proposed path loss models and additionally provide new coefficients for the Log-distance model. Our results reveal that the Log-distance model and other well-known empirical models such as Okumura or Winner+ provide reasonable estimations in an urban environment, and terrain based models such as ITM or ITWOM have no advantages. In addition, we derive estimations for the needed sample size in similar measurement campaigns. To stimulate further research in this direction, we make all our data publicly available.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا