Do you want to publish a course? Click here

Virtual Drive-Tests: A Case for Predicting QoE in Adaptive Video Streaming

87   0   0.0 ( 0 )
 Added by Hakan G\\\"okcesu
 Publication date 2021
and research's language is English




Ask ChatGPT about the research

Intelligent and autonomous troubleshooting is a crucial enabler for the current 5G and future 6G networks. In this work, we develop a flexible architecture for detecting anomalies in adaptive video streaming comprising three main components: i) A pattern recognizer that learns a typical pattern for video quality from the client-side application traces of a specific reference video, ii) A predictor for mapping Radio Frequency (RF) performance indicators collected on the network-side using user-based traces to a video quality measure, iii) An anomaly detector for comparing the predicted video quality pattern with the typical pattern to identify anomalies. We use real network traces (i.e., on-device measurements) collected in different geographical locations and at various times of day to train our machine learning models. We perform extensive numerical analysis to demonstrate key parameters impacting correct video quality prediction and anomaly detection. In particular, we have shown that the video playback time is the most crucial parameter determining the video quality since buffering continues during the playback and resulting in better video quality further into the playback. However, we also reveal that RF performance indicators characterizing the quality of the cellular connectivity are required to correctly predict QoE in anomalous cases. Then, we have exhibited that the mean maximum F1-score of our method is 77%, verifying the efficacy of our models. Our architecture is flexible and autonomous, so one can apply it to -- and operate with -- other user applications as long as the relevant user-based traces are available.



rate research

Read More

Unraveling quality of experience (QoE) of video streaming is very challenging in bandwidth shared wireless networks. It is unclear how QoE metrics such as starvation probability and buffering time interact with dynamics of streaming traffic load. In this paper, we collect view records from one of the largest streaming providers in China over two weeks and perform an in-depth measurement study on flow arrival and viewing time that shed light on the real traffic pattern. Our most important observation is that the viewing time of streaming users fits a hyper-exponential distribution quite well. This implies that all the views can be categorized into two classes, short and long views with separated time scales. We then map the measured traffic pattern to bandwidth shared cellular networks and propose an analytical framework to compute the closed-form starvation probability on the basis of ordinary differential equations (ODEs). Our framework can be naturally extended to investigate practical issues including the progressive downloading and the finite video duration. Extensive trace-driven simulations validate the accuracy of our models. Our study reveals that the starvation metrics of the short and long views possess different sensitivities to the scheduling priority at base station. Hence, a better QoE tradeoff between the short and long views has a potential to be leveraged by offering them different scheduling weights. The flow differentiation involves tremendous technical and non-technical challenges because video content is owned by content providers but not the network operators and the viewing time of each session is unknown beforehand. To overcome these difficulties, we propose an online Bayesian approach to infer the viewing time of each incoming flow with the least information from content providers.
We provide in this paper a tutorial and a comprehensive survey of QoE management solutions in current and future networks. We start with a high level description of QoE management for multimedia services, which integrates QoE modelling, monitoring, and optimization. This followed by a discussion of HTTP Adaptive Streaming (HAS) solutions as the dominant technique for streaming videos over the best-effort Internet. We then summarize the key elements in SDN/NFV along with an overview of ongoing research projects, standardization activities and use cases related to SDN, NFV, and other emerging applications. We provide a survey of the state-of-the-art of QoE management techniques categorized into three different groups: a) QoE-aware/driven strategies using SDN and/or NFV; b) QoE-aware/driven approaches for adaptive streaming over emerging architectures such as multi-access edge computing, cloud/fog computing, and information-centric networking; and c) extended QoE management approaches in new domains such as immersive augmented and virtual reality, mulsemedia and video gaming applications. Based on the review, we present a list of identified future QoE management challenges regarding emerging multimedia applications, network management and orchestration, network slicing and collaborative service management in softwarized networks. Finally, we provide a discussion on future research directions with a focus on emerging research areas in QoE management, such as QoE-oriented business models, QoE-based big data strategies, and scalability issues in QoE optimization.
Bandwidth requirements of both wireless and wired clients in access networks continue to increase rapidly, primarily due to the growth of video traffic. Application awareness can be utilized in access networks to optimize quality of experience (QoE) of end clients. In this study, we utilize information at the client-side application (e.g., video resolution) to achieve superior resource allocation that improves user QoE. We emphasize optimizing QoE of the system rather than quality of service (QoS), as user satisfaction directly relies on QoE and optimizing QoS does not necessarily optimize QoE, as shown in this study. We propose application-aware resource-allocation schemes on an Ethernet passive optical network (EPON), which supports wireless (utilizing orthogonal frequency division multiple access) and wired clients running video-conference applications. Numerical results show that the application-aware resource-allocation schemes improve QoE for video-conference applications for wired and wireless clients.
Despite the growing popularity of video streaming over the Internet, problems such as re-buffering and high startup latency continue to plague users. In this paper, we present an end-to-end characterization of Yahoos video streaming service, analyzing over 500 million video chunks downloaded over a two-week period. We gain unique visibility into the causes of performance degradation by instrumenting both the CDN server and the client player at the chunk level, while also collecting frequent snapshots of TCP variables from the server network stack. We uncover a range of performance issues, including an asynchronous disk-read timer and cache misses at the server, high latency and latency variability in the network, and buffering delays and dropped frames at the client. Looking across chunks in the same session, or destined to the same IP prefix, we see how some performance problems are relatively persistent, depending on the videos popularity, the distance between the client and server, and the clients operating system, browser, and Flash runtime.
325 - Wei Quan , Yuxuan Pan , Bin Xiang 2020
With the merit of containing full panoramic content in one camera, Virtual Reality (VR) and 360-degree videos have attracted more and more attention in the field of industrial cloud manufacturing and training. Industrial Internet of Things (IoT), where many VR terminals needed to be online at the same time, can hardly guarantee VRs bandwidth requirement. However, by making use of users quality of experience (QoE) awareness factors, including the relative moving speed and depth difference between the viewpoint and other content, bandwidth consumption can be reduced. In this paper, we propose OFB-VR (Optical Flow Based VR), an interactive method of VR streaming that can make use of VR users QoE awareness to ease the bandwidth pressure. The Just-Noticeable Difference through Optical Flow Estimation (JND-OFE) is explored to quantify users awareness of quality distortion in 360-degree videos. Accordingly, a novel 360-degree videos QoE metric based on PSNR and JND-OFE (PSNR-OF) is proposed. With the help of PSNR-OF, OFB-VR proposes a versatile-size tiling scheme to lessen the tiling overhead. A Reinforcement Learning(RL) method is implemented to make use of historical data to perform Adaptive BitRate(ABR). For evaluation, we take two prior VR streaming schemes, Pano and Plato, as baselines. Vast evaluations show that our system can increase the mean PSNR-OF score by 9.5-15.8% while maintaining the same rebuffer ratio compared with Pano and Plato in a fluctuate LTE bandwidth dataset. Evaluation results show that OFB-VR is a promising prototype for actual interactive industrial VR. A prototype of OFB-VR can be found in https://github.com/buptexplorers/OFB-VR.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا