Here we report the comparison of the upper critical fields of different superconductors being calculated by two different theories i.e., Werthamer Helfand Hohenburg (WHH) and Ginzberg Landau (GL). All the samples are synthesized through previously known solid state reaction route. Phase purity is determined from the Rietveld refinement of powder X-Ray diffraction (XRD) data. High field (up to 14Tesla) magneto transport r{ho}(T)H of different superconductors is studied to estimate their upper critical field (Hc2). The present inter comparison covers from Cuprates (YBa2Cu3O7) - Borides (MgB2) - Fe pnictides (NdFeAsO0.8F0.2) and chalcogenides (FeSe0.5Te0.5) to robust Nb2PdS5. The upper critical fields [Hc2(T)] at zero temperature are calculated by extrapolating the data using GL and WHH equations.
Critical fields of four MgB2 thin films with a normal state resistivity ranging from 5 to 50 mWcm and Tc from 29.5 to 38.8 K were measured up to 28 T. Hc2(T) curves present a linear behavior towards low temperatures. Very high critical field values have been found, up to 24 T along the c-axis and 57 T in the basal plane not depending on the normal state resistivity values. In this paper, critical fields will be analyzed taking into account the multiband nature of MgB2; we will show that resistivity and upper critical fields can be ascribed to different scattering mechanisms.
We report synthesis, structural details and complete superconducting characterization of very recently discovered Nb2PdS5 new superconductor. The synthesized compound is crystallized in mono-clinic structure. Bulk superconductivity is seen in both magnetic susceptibility and electrical resistivity measurements with superconducting transition temperature (Tc) at 6K. The upper critical field (Hc2), being estimated from high field magneto-transport measure-ments is above 240kOe. The estimated Hc2(0) is clearly above the Pauli paramagnetic limit. Heat capacity measurements show clear transition with well defined peak at Tc, but with lower jump than as expected for a BCS type superconductor. The Sommerfield constant and Debye temperature as determined from low temperature fitting of heat capacity data are 32mJ/moleK2 and 263K respectively. Hall coefficients and resistivity in conjugation with electronic heat capacity indicates multiple gap superconductivity signatures in Nb2PdS5. We also studied the impact of hydrostatic pressure on superconductivity of Nb2PdS5 and found nearly no change in Tc for the given pressure range.
We report a significant enhancement of the upper critical field $H_{c2}$ of different $MgB_2$ samples alloyed with nonmagnetic impurities. By studying films and bulk polycrystals with different resistivities $rho$, we show a clear trend of $H_{c2}$ increase as $rho$ increases. One particular high resistivity film had zero-temperature $H_{c2}(0)$ well above the $H_{c2}$ values of competing non-cuprate superconductors such as $Nb_3Sn$ and Nb-Ti. Our high-field transport measurements give record values $H_{c2}^perp (0) approx 34T$ and $H_{c2}|(0) approx 49 T$ for high resistivity films and $H_{c2}(0)approx 29 T$ for untextured bulk polycrystals. The highest $H_{c2}$ film also exhibits a significant upward curvature of $H_{c2}(T)$, and temperature dependence of the anisotropy parameter $gamma(T) = H_{c2}|/ H_{c2}^perp$ opposite to that of single crystals: $gamma(T)$ decreases as the temperature decreases, from $gamma(T_c) approx 2$ to $gamma(0) approx 1.5$. This remarkable $H_{c2}$ enhancement and its anomalous temperature dependence are a consequence of the two-gap superconductivity in $MgB_2$, which offers special opportunities for further $H_{c2}$ increase by tuning of the impurity scattering by selective alloying on Mg and B sites. Our experimental results can be explained by a theory of two-gap superconductivity in the dirty limit. The very high values of $H_{c2}(T)$ observed suggest that $MgB_2$ can be made into a versatile, competitive high-field superconductor.
We present a detailed study of the electrical transport properties of YBa2Cu3O7-{delta} thin film. The irreversibility fields ({mu}_0 H_irr), upper critical fields ({mu}_0 H_C2), penetration depths ({lambda}) and coherence lengths ({xi} ) of the YBa2Cu3O7-{delta} materials are deduced from the resistivity curves. Itis observed that {mu}_0 H_irr, {mu}_0 H_C2 and {Delta}Tc of the film strongly depend on the direction and strength of the field. The coherence length {xi} (0) and penetration depth {lambda} (0) values at T = 0 K has been calculated from the irreversibility fields ({mu}_0 H_irr) and upper critical fields ({mu}_0 H_C2) respectively. Based on all the results, the change of the superconducting properties as a function of the magnetic field direction presents the anisotropy of the sample produced.
The use of MgB2 in superconducting applications still awaits for the development of a MgB2-based material where both current-carrying performance and critical magnetic field are optimized simultaneously. We achieved this by doping MgB2 with double-wall carbon nanotubes (DWCNT) as a source of carbon in polycrystalline samples. The optimum nominal DWCNT content for increasing the critical current density, Jc is in the range 2.5-10%at depending on field and temperature. Record values of the upper critical field, Hc2(4K) = 41.9 T (with extrapolated Hc2(0) ~ 44.4 T) are reached in a bulk sample with 10%at DWCNT content. The measured Hc2 vs T in all samples are successfully described using a theoretical model for a two-gap superconductor in the dirty limit first proposed by Gurevich et al.
R. Sultana
,P. Rani
,A. K. Hafiz
.
(2016)
.
"An inter comparison of the upper critical fields (Hc2) of different superconductors - YBa2Cu3O7, MgB2, NdFeAsO0.8F0.2, FeSe0.5Te0.5 and Nb2PdS5"
.
Veer Awana Dr
هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا