Do you want to publish a course? Click here

Deviation of viscous drops at chemical steps

98   0   0.0 ( 0 )
 Added by Ciro Semprebon
 Publication date 2016
  fields Physics
and research's language is English




Ask ChatGPT about the research

We present systematic wetting experiments and numerical simulations of gravity driven liquid drops sliding on a plane substrate decorated with a linear chemical step. Surprisingly, the optimal direction to observe crossing is not the one perpendicular to the step, but a finite angle that depends on the material parameters. We computed the landscapes of the force acting on the drop by means of a contact line mobility model showing that contact angle hysteresis dominates the dynamics at the step and determines whether the drop passes onto the lower substrate. This analysis is very well supported by the experimental dynamic phase diagram in terms of pinning, crossing, sliding and sliding followed by pinning.



rate research

Read More

Thin, viscous liquid films subjected to impact events can deform. Here we investigate free surface oil film deformations that arise due to the air pressure buildup under the impacting and rebouncing water drops. Using Digital Holographic Microscopy, we measure the 3D surface topography of the deformed film immediately after the drop rebound, with a resolution down to 20 nm. We first discuss how the film is initially deformed during impact, as a function of film thickness, film viscosity, and drop impact speed. Subsequently, we describe the slow relaxation process of the deformed film after the rebound. Scaling laws for the broadening of the width and the decay of the amplitude of the perturbations are obtained experimentally and found to be in excellent agreement with the results from a lubrication analysis. We finally arrive at a detailed spatio-temporal description of the oil film deformations that arise during the impact and rebouncing of water drops.
Marangoni propulsion is a form of locomotion wherein an asymmetric release of surfactant by a body located at the surface of a liquid leads to its directed motion. We present in this paper a mathematical model for Marangoni propulsion in the viscous regime. We consider the case of a thin rigid circular disk placed at the surface of a viscous fluid and whose perimeter has a prescribed concentration of an insoluble surfactant, to which the rest of its surface is impenetrable. Assuming a linearized equation of state between surface tension and surfactant concentration, we derive analytically the surfactant, velocity and pressure fields in the asymptotic limit of low Capillary, Peclet and Reynolds numbers. We then exploit these results to calculate the Marangoni propulsion speed of the disk. Neglecting the stress contribution from Marangoni flows is seen to over-predict the propulsion speed by 50%.
Solid particles floating at a liquid interface exhibit a long-ranged attraction mediated by surface tension. In the absence of bulk elasticity, this is the dominant lateral interaction of mechanical origin. Here we show that an analogous long-range interaction occurs between adjacent droplets on solid substrates, which crucially relies on a combination of capillarity and bulk elasticity. We experimentally observe the interaction between droplets on soft gels and provide a theoretical framework that quantitatively predicts the migration velocity of the droplets. Remarkably, we find that while on thick substrates the interaction is purely attractive and leads to drop-drop coalescence, for relatively thin substrates a short-range repulsion occurs which prevents the two drops from coming into direct contact. This versatile, new interaction is the liquid-on-solid analogue of the Cheerios effect. The effect will strongly influence the condensation and coarsening of drop soft polymer films, and has potential implications for colloidal assembly and in mechanobiology.
We consider sedimentation of a rigid helical filament in a viscous fluid under gravity. In the Stokes limit, the drag forces and torques on the filament are approximated within the resistive-force theory. We develop an analytic approximation to the exact equations of motion that works well in the limit of a sufficiently large number of turns in the helix (larger than two, typically). For a wide range of initial conditions, our approximation predicts that the centre of the helix itself follows a helical path with the symmetry axis of the trajectory being parallel to the direction of gravity. The radius and the pitch of the trajectory scale as non-trivial powers of the number of turns in the original helix. For the initial conditions corresponding to an almost horizontal orientation of the helix, we predict trajectories that are either attracted towards the horizontal orientation, in which case the helix sediments in a straight line along the direction of gravity, or trajectories that form a helical-like path with many temporal frequencies involved. Our results provide new insight into the sedimentation of chiral objects and might be used to develop new techniques for their spatial separation.
Geometric confinements are frequently encountered in the biological world and strongly affect the stability, topology, and transport properties of active suspensions in viscous flow. Based on a far-field analytical model, the low-Reynolds-number locomotion of a self-propelled microswimmer moving inside a clean viscous drop or a drop covered with a homogeneously distributed surfactant, is theoretically examined. The interfacial viscous stresses induced by the surfactant are described by the well-established Boussinesq-Scriven constitutive rheological model. Moreover, the active agent is represented by a force dipole and the resulting fluid-mediated hydrodynamic couplings between the swimmer and the confining drop are investigated. We find that the presence of the surfactant significantly alters the dynamics of the encapsulated swimmer by enhancing its reorientation. Exact solutions for the velocity images for the Stokeslet and dipolar flow singularities inside the drop are introduced and expressed in terms of infinite series of harmonic components. Our results offer useful insights into guiding principles for the control of confined active matter systems and support the objective of utilizing synthetic microswimmers to drive drops for targeted drug delivery applications.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا