Do you want to publish a course? Click here

Towards an analytical description of active microswimmers in clean and in surfactant-covered drops

160   0   0.0 ( 0 )
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

Geometric confinements are frequently encountered in the biological world and strongly affect the stability, topology, and transport properties of active suspensions in viscous flow. Based on a far-field analytical model, the low-Reynolds-number locomotion of a self-propelled microswimmer moving inside a clean viscous drop or a drop covered with a homogeneously distributed surfactant, is theoretically examined. The interfacial viscous stresses induced by the surfactant are described by the well-established Boussinesq-Scriven constitutive rheological model. Moreover, the active agent is represented by a force dipole and the resulting fluid-mediated hydrodynamic couplings between the swimmer and the confining drop are investigated. We find that the presence of the surfactant significantly alters the dynamics of the encapsulated swimmer by enhancing its reorientation. Exact solutions for the velocity images for the Stokeslet and dipolar flow singularities inside the drop are introduced and expressed in terms of infinite series of harmonic components. Our results offer useful insights into guiding principles for the control of confined active matter systems and support the objective of utilizing synthetic microswimmers to drive drops for targeted drug delivery applications.



rate research

Read More

Many plankton species undergo daily vertical migration to large depths in the turbulent ocean. To do this efficiently, the plankton can use a gyrotactic mechanism, aligning them with gravity to swim downwards, or against gravity to swim upwards. Many species show passive mechanisms for gyrotactic stability. For example, bottom-heavy plankton tend to align upwards. This is efficient for upward migration in quiescent flows, but it is often sensitive to turbulence which upsets the alignment. Here we suggest a simple, robust active mechanism for gyrotactic stability, which is only lightly affected by turbulence and allows alignment both along and against gravity. We use a model for a plankton that swims with a constant speed and can actively steer in response to hydrodynamic signals encountered in simulations of a turbulent flow. Using reinforcement learning, we identify the optimal steering strategy. By using its setae to sense its settling velocity transversal to its swimming direction, the swimmer can deduce information about the direction of gravity, allowing it to actively align upwards. The mechanism leads to a rate of upward migration in a turbulent flow that is of the same order as in quiescent flows, unless the turbulence is very vigorous. In contrast, passive swimmers show much smaller upward velocity in turbulence. Settling may even cause them to migrate downwards in vigorous turbulence.
Recent studies show that spherical motile micro-organisms in turbulence subject to gravitational torques gather in down-welling regions of the turbulent flow. By analysing a statistical model we analytically compute how shape affects the dynamics, preferential sampling, and small-scale spatial clustering. We find that oblong organisms may spend more time in up-welling regions of the flow, and that all organisms are biased to regions of positive fluid-velocity gradients in the upward direction. We analyse small-scale spatial clustering and find that oblong particles may either cluster more or less than spherical ones, depending on the strength of the gravitational torques.
Extremely small amounts of surface-active contaminants are known to drastically modify the hydrodynamic response of the water-air interface. Surfactant concentrations as low as a few thousand molecules per square micron are sufficient to eventually induce complete stiffening. In order to probe the shear response of a water-air interface, we design a radial flow experiment that consists in an upward water jet directed to the interface. We observe that the standard no-slip effect is often circumvented by an azimuthal instability with the occurence of a vortex pair. Supported by numerical simulations, we highlight that the instability occurs in the (inertia-less) Stokes regime and is driven by surfactant advection by the flow. The latter mechanism is suggested as a general feature in a wide variety of reported and yet unexplained observations.
We present systematic wetting experiments and numerical simulations of gravity driven liquid drops sliding on a plane substrate decorated with a linear chemical step. Surprisingly, the optimal direction to observe crossing is not the one perpendicular to the step, but a finite angle that depends on the material parameters. We computed the landscapes of the force acting on the drop by means of a contact line mobility model showing that contact angle hysteresis dominates the dynamics at the step and determines whether the drop passes onto the lower substrate. This analysis is very well supported by the experimental dynamic phase diagram in terms of pinning, crossing, sliding and sliding followed by pinning.
Thin liquid films are central to everyday life. They are ubiquitous in modern technology (pharmaceuticals, coatings), consumer products (foams, emulsions) and also serve vital biological functions (tear film of the eye, pulmonary surfactants in the lung). A common feature in all these examples is the presence of surface-active molecules at the air-liquid interface. Though they form only molecularly-thin layers, these surfactants produce complex surface stresses on the free surface, which have important consequences for the dynamics and stability of the underlying thin liquid film. Here we conduct simple thinning experiments to explore the fundamental mechanisms that allow the surfactant molecules to slow the gravity-driven drainage of the underlying film. We present a simple model that works for both soluble and insoluble surfactant systems. We show that surfactants with finite surface rheology influence bulk flow through viscoelastic interfacial stresses, while surfactants with inviscid surfaces achieve stability through opposing surface-tension induced Marangoni flows.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا