No Arabic abstract
Myosin motor proteins drive vigorous steady-state fluctuations in the actin cytoskeleton of cells. Endogenous embedded semiflexible filaments such as microtubules, or added filaments such as single-walled carbon nanotubes are used as novel tools to non-invasively track equilibrium and non-equilibrium fluctuations in such biopolymer networks. Here we analytically calculate shape fluctuations of semiflexible probe filaments in a viscoelastic environment, driven out of equilibrium by motor activity. Transverse bending fluctuations of the probe filaments can be decomposed into dynamic normal modes. We find that these modes no longer evolve independently under non-equilibrium driving. This effective mode coupling results in non-zero circulatory currents in a conformational phase space, reflecting a violation of detailed balance. We present predictions for the characteristic frequencies associated with these currents and investigate how the temporal signatures of motor activity determine mode correlations, which we find to be consistent with recent experiments on microtubules embedded in cytoskeletal networks.
Large protein complexes are assembled from protein subunits to form a specific structure. In our theoretic work, we propose that assembly into the correct structure could be reliably achieved through an assembly line with a specific sequence of assembly steps. Using droplet interfaces to position compartment boundaries, we show that an assembly line can be self organized by active droplets. As a consequence, assembly steps can be arranged spatially so that a specific order of assembly is achieved and incorrect assembly is strongly suppressed.
We consider the dynamics of a rigid filament in a motor protein assay under external loading. The motor proteins are modeled as active harmonic linkers with tail ends immobilized on a substrate. Their heads attach to the filament stochastically to extend along it, resulting in a force on the filament, before detaching. The rate of extension and detachment are load dependent. Here we formulate and characterize the governing dynamics in the mean field approximation using linear stability analysis, and direct numerical simulations of the motor proteins and filament. Under constant loading, the system shows transition from a stable configuration to instability towards detachment of the filament from motor proteins. Under elastic loading, we find emergence of stable limit cycle oscillations via a supercritical Hopf bifurcation with change in activity and the number of motor proteins. Numerical simulations of the system for large number of motor proteins show good agreement with the mean field predictions.
By embedding inert tracer particles (TPs) in a growing multicellular spheroid the local stresses on the cancer cells (CCs) can be measured. In order for this technique to be effective the unknown effect of the dynamics of the TPs on the CCs has to be elucidated to ensure that the TPs do not greatly alter the local stresses on the CCs. We show, using theory and simulations, that the self-generated (active) forces arising from proliferation and apoptosis of the CCs drive the dynamics of the TPs far from equilibrium. On time scales less than the division times of the CCs, the TPs exhibit sub-diffusive dynamics (the mean square displacement, $Delta_{TP}(t) sim t^{beta_{TP}}$ with $beta_{TP}<1$), similar to glass-forming systems. Surprisingly, in the long-time limit, the motion of the TPs is hyper-diffusive ($Delta_{TP}(t) sim t^{alpha_{TP}}$ with $alpha_{TP}>2$) due to persistent directed motion for long times. In comparison, proliferation of the CCs randomizes their motion leading to superdiffusive behavior with $alpha_{CC}$ exceeding unity. Most importantly, $alpha_{CC}$ is not significantly affected by the TPs. Our predictions could be tested using textit{in vitro} imaging methods where the motion of the TPs and the CCs can be tracked.
We investigate the effect of stress fluctuations on the stochastic dynamics of an inclusion embedded in a viscous gel. We show that, in non-equilibrium systems, stress fluctuations give rise to an effective attraction towards the boundaries of the confining domain, which is reminiscent of an active Casimir effect. We apply this generic result to the dynamics of deformations of the cell nucleus and we demonstrate the appearance of a fluctuation maximum at a critical level of activity, in agreement with recent experiments [E. Makhija, D. S. Jokhun, and G. V. Shivashankar, Proc. Natl. Acad. Sci. U.S.A. 113, E32 (2016)].
Bacterial processes ranging from gene expression to motility and biofilm formation are constantly challenged by internal and external noise. While the importance of stochastic fluctuations has been appreciated for chemotaxis, it is currently believed that deterministic long-range fluid dynamical effects govern cell-cell and cell-surface scattering - the elementary events that lead to swarming and collective swimming in active suspensions and to the formation of biofilms. Here, we report the first direct measurements of the bacterial flow field generated by individual swimming Escherichia coli both far from and near to a solid surface. These experiments allowed us to examine the relative importance of fluid dynamics and rotational diffusion for bacteria. For cell-cell interactions it is shown that thermal and intrinsic stochasticity drown the effects of long-range fluid dynamics, implying that physical interactions between bacteria are determined by steric collisions and near-field lubrication forces. This dominance of short-range forces closely links collective motion in bacterial suspensions to self-organization in driven granular systems, assemblages of biofilaments, and animal flocks. For the scattering of bacteria with surfaces, long-range fluid dynamical interactions are also shown to be negligible before collisions; however, once the bacterium swims along the surface within a few microns after an aligning collision, hydrodynamic effects can contribute to the experimentally observed, long residence times. As these results are based on purely mechanical properties, they apply to a wide range of microorganisms.