No Arabic abstract
Bacterial processes ranging from gene expression to motility and biofilm formation are constantly challenged by internal and external noise. While the importance of stochastic fluctuations has been appreciated for chemotaxis, it is currently believed that deterministic long-range fluid dynamical effects govern cell-cell and cell-surface scattering - the elementary events that lead to swarming and collective swimming in active suspensions and to the formation of biofilms. Here, we report the first direct measurements of the bacterial flow field generated by individual swimming Escherichia coli both far from and near to a solid surface. These experiments allowed us to examine the relative importance of fluid dynamics and rotational diffusion for bacteria. For cell-cell interactions it is shown that thermal and intrinsic stochasticity drown the effects of long-range fluid dynamics, implying that physical interactions between bacteria are determined by steric collisions and near-field lubrication forces. This dominance of short-range forces closely links collective motion in bacterial suspensions to self-organization in driven granular systems, assemblages of biofilaments, and animal flocks. For the scattering of bacteria with surfaces, long-range fluid dynamical interactions are also shown to be negligible before collisions; however, once the bacterium swims along the surface within a few microns after an aligning collision, hydrodynamic effects can contribute to the experimentally observed, long residence times. As these results are based on purely mechanical properties, they apply to a wide range of microorganisms.
Cells coexist together in colonies or as tissues. Their behaviour is controlled by an interplay between intercellular forces and biochemical regulation. We develop a simple model of the cell cycle, the fundamental regulatory network controlling growth and division, and couple this to the physical forces arising within the cell collective. We analyse this model using both particle-based computer simulations and a continuum theory. We focus on 2D colonies confined in a channel. These develop moving growth fronts of dividing cells with quiescent cells in the interior. The profile and speed of these fronts are non-trivially related to the substrate friction and the cell cycle parameters, providing a possible approach to measure such parameters in experiments.
We investigate the effect of stress fluctuations on the stochastic dynamics of an inclusion embedded in a viscous gel. We show that, in non-equilibrium systems, stress fluctuations give rise to an effective attraction towards the boundaries of the confining domain, which is reminiscent of an active Casimir effect. We apply this generic result to the dynamics of deformations of the cell nucleus and we demonstrate the appearance of a fluctuation maximum at a critical level of activity, in agreement with recent experiments [E. Makhija, D. S. Jokhun, and G. V. Shivashankar, Proc. Natl. Acad. Sci. U.S.A. 113, E32 (2016)].
We discuss the physical mechanisms that promote or suppress the nucleation of a fluid-filled lumen inside a cell assembly or a tissue. We discuss lumen formation in a continuum theory of tissue material properties in which the tissue is described as a two-fluid system to account for its permeation by the interstitial fluid, and we include fluid pumping as well as active electric effects. Considering a spherical geometry and a polarized tissue, our work shows that fluid pumping and tissue flexoelectricity play a crucial role in lumen formation. We furthermore explore the large variety of long-time states that are accessible for the cell aggregate and its lumen. Our work reveals a role of the coupling of mechanical, electrical and hydraulic phenomena in tissue lumen formation.
We develop a microscopic biophysical model for self-organization and reshaping of artificial tissue, that is co-driven by microscopic active forces between cells and extracellular matrix (ECM), and macroscopic forces that develop within the tissue, finding close agreement with experiment. Microscopic active forces are stimulated by $mu$m scale interactions between cells and the ECM within which they exist, and when large numbers of cells act together these forces drive, and are affected by, macroscopic-scale self-organization and reshaping of tissues in a feedback loop. To understand this loop, there is a need to: (1) construct microscopic biophysical models that can simulate these processes for the very large number of cells found in tissues; (2) validate and calibrate those models against experimental data; and (3) understand the active feedback between cells and the extracellular matrix, and its relationship to macroscopic self-organization and reshaping of tissue. Our microscopic biophysical model consists of a contractile network representing the ECM, that interacts with a large number of cells via dipole forces, to describe macroscopic self-organization and reshaping of tissue. We solve the model using simulated annealing, finding close agreement with experiments on artificial neural tissue. We discuss calibration of model parameters. We conclude that feedback between microscopic cell-ECM dipole interactions and tissue-scale forces, is a key factor in driving macroscopic self-organization and reshaping of tissue. We discuss application of the biophysical model to simulation and rational design of artificial tissues.
Epithelial cell clusters often move collectively on a substrate. Mechanical signals play a major role in organizing this behavior. There are a number of experimental observations in these systems which await a comprehensive explanation. These include: the internal strains are tensile even for clusters that expand by proliferation; the tractions on the substrate are often confined to the edges of the cluster; there can exist density waves within the cluster; clusters can exhibit collective durotaxis when individual cells show no effect; and for cells in an annulus there is a transition between expanding clusters with proliferation and the case where cells fill the annulus and rotate around it. We formulate a mechanical model to examine these effects. We use a molecular clutch picture which allows stalling -- inhibition of cell contraction by external forces. Stalled cells are passive from a physical point of view and the un-stalled cells are active. By attaching cells to the substrate and to each other, and taking into account contact inhibition of locomotion, we get a simple picture for many of these findings as well as predictions that could be tested. SI text/figures included, SI movies at https://rice.box.com/s/xiy3mwsfj3203lfu7pk0udfklexcgsew