Do you want to publish a course? Click here

Filament-motor protein system under loading: instability and limit cycle oscillations

183   0   0.0 ( 0 )
 Added by Debasish Chaudhuri
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

We consider the dynamics of a rigid filament in a motor protein assay under external loading. The motor proteins are modeled as active harmonic linkers with tail ends immobilized on a substrate. Their heads attach to the filament stochastically to extend along it, resulting in a force on the filament, before detaching. The rate of extension and detachment are load dependent. Here we formulate and characterize the governing dynamics in the mean field approximation using linear stability analysis, and direct numerical simulations of the motor proteins and filament. Under constant loading, the system shows transition from a stable configuration to instability towards detachment of the filament from motor proteins. Under elastic loading, we find emergence of stable limit cycle oscillations via a supercritical Hopf bifurcation with change in activity and the number of motor proteins. Numerical simulations of the system for large number of motor proteins show good agreement with the mean field predictions.



rate research

Read More

Proteins form a very important class of polymers. In spite of major advances in the understanding of polymer science, the protein problem has remained largely unsolved. Here, we show that a polymer chain viewed as a tube not only captures the well-known characteristics of polymers and their phases but also provides a natural explanation for many of the key features of protein behavior. There are two natural length scales associated with a tube subject to compaction -- the thickness of the tube and the range of the attractive interactions. For short tubes, when these length scales become comparable, one obtains marginally compact structures, which are relatively few in number compared to those in the generic compact phase of polymers. The motifs associated with the structures in this new phase include helices, hairpins and sheets. We suggest that Nature has selected this phase for the structures of proteins because of its many advantages including the few candidate strucures, the ability to squeeze the water out from the hydrophobic core and the flexibility and versatility associated with being marginally compact. Our results provide a framework for understanding the common features of all proteins.
Cytoskeletal networks form complex intracellular structures. Here we investigate a minimal model for filament-motor mixtures in which motors act as depolymerases and thereby regulate filament length. Combining agent-based simulations and hydrodynamic equations, we show that resource-limited length regulation drives the formation of filament clusters despite the absence of mechanical interactions between filaments. Even though the orientation of individual remains fixed, collective filament orientation emerges in the clusters, aligned orthogonal to their interfaces.
Fluorescence microscopy reveals that the contents of many (membrane-free) nuclear bodies exchange rapidly with the soluble pool whilst the underlying structure persists; such observations await a satisfactory biophysical explanation. To shed light on this, we perform large-scale Brownian dynamics simulations of a chromatin fiber interacting with an ensemble of (multivalent) DNA-binding proteins; these proteins switch between two states -- active (binding) and inactive (non-binding). This system provides a model for any DNA-binding protein that can be modified post-translationally to change its affinity for DNA (e.g., like the phosphorylation of a transcription factor). Due to this out-of-equilibrium process, proteins spontaneously assemble into clusters of self-limiting size, as individual proteins in a cluster exchange with the soluble pool with kinetics like those seen in photo-bleaching experiments. This behavior contrasts sharply with that exhibited by equilibrium, or non-switching, proteins that exist only in the binding state; when these bind to DNA non-specifically, they form clusters that grow indefinitely in size. Our results point to post-translational modification of chromatin-bridging proteins as a generic mechanism driving the self-assembly of highly dynamic, non-equilibrium, protein clusters with the properties of nuclear bodies. Such active modification also reshapes intra-chromatin contacts to give networks resembling those seen in topologically-associating domains, as switching markedly favors local (short-range) contacts over distant ones.
Myosin motor proteins drive vigorous steady-state fluctuations in the actin cytoskeleton of cells. Endogenous embedded semiflexible filaments such as microtubules, or added filaments such as single-walled carbon nanotubes are used as novel tools to non-invasively track equilibrium and non-equilibrium fluctuations in such biopolymer networks. Here we analytically calculate shape fluctuations of semiflexible probe filaments in a viscoelastic environment, driven out of equilibrium by motor activity. Transverse bending fluctuations of the probe filaments can be decomposed into dynamic normal modes. We find that these modes no longer evolve independently under non-equilibrium driving. This effective mode coupling results in non-zero circulatory currents in a conformational phase space, reflecting a violation of detailed balance. We present predictions for the characteristic frequencies associated with these currents and investigate how the temporal signatures of motor activity determine mode correlations, which we find to be consistent with recent experiments on microtubules embedded in cytoskeletal networks.
489 - Yu-Chen Cheng , Hong Qian 2020
Dynamical systems with $epsilon$ small random perturbations appear in both continuous mechanical motions and discrete stochastic chemical kinetics. The present work provides a detailed analysis of the central limit theorem (CLT), with a time-inhomogeneous Gaussian process, near a deterministic limit cycle in $mathbb{R}^n$. Based on the theory of random perturbations of dynamical systems and the WKB approximation respectively, results are developed in parallel from both standpoints of stochastic trajectories and transition probability density and their relations are elucidated. We show rigorously the correspondence between the local Gaussian fluctuations and the curvature of the large deviation rate function near its infimum, connecting the CLT and the large deviation principle of diffusion processes. We study uniform asymptotic behavior of stochastic limit cycles through the interchange of limits of time $ttoinfty$ and $epsilonto 0$. Three further characterizations of stochastic limit cycle oscillators are obtained: (i) An approximation of the probability flux near the cycle; (ii) Two special features of the vector field for the cyclic motion; (iii) A local entropy balance equation along the cycle with clear physical meanings. Lastly and different from the standard treatment, the origin of the $epsilon$ in the theory is justified by a novel scaling hypothesis via constructing a sequence of stochastic differential equations.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا