Do you want to publish a course? Click here

A New Method for Wide-Field Near-IR Imaging with the Hubble Space Telescope

100   0   0.0 ( 0 )
 Added by Ivelina Momcheva
 Publication date 2016
  fields Physics
and research's language is English




Ask ChatGPT about the research

We present a new technique for wide and shallow observations using the near-infrared channel of Wide Field Camera 3 (WFC3) on the Hubble Space Telescope (HST). Wide-field near-IR surveys with HST are generally inefficient, as guide star acquisitions make it impractical to observe more than one pointing per orbit. This limitation can be circumvented by guiding with gyros alone, which is possible as long as the telescope has three functional gyros. The method presented here allows us to observe mosaics of eight independent WFC3-IR pointings in a single orbit by utilizing the fact that HST drifts by only a very small amount in the 25 seconds between non-destructive reads of unguided exposures. By shifting the reads and treating them as independent exposures the full resolution of WFC3 can be restored. We use this drift and shift (DASH) method in the Cycle 23 COSMOS-DASH program, which will obtain 456 WFC3 $H_{160}$ pointings in 57 orbits, covering an area of 0.6 degree$^2$ in the COSMOS field down to $H_{160} = 25$. When completed, the program will more than triple the area of extra-galactic survey fields covered by near-IR imaging at HST resolution. We demonstrate the viability of the method with the first four orbits (32 pointings) of this program. We show that the resolution of the WFC3 camera is preserved, and that structural parameters of galaxies are consistent with those measured in guided observations.



rate research

Read More

We discuss scientific, technical and programmatic issues related to the use of an NRO 2.4m telescope for the WFIRST initiative of the 2010 Decadal Survey. We show that this implementation of WFIRST, which we call NEW WFIRST, would achieve the goals of the NWNH Decadal Survey for the WFIRST core programs of Dark Energy and Microlensing Planet Finding, with the crucial benefit of deeper and/or wider near-IR surveys for GO science and a potentially Hubble-like Guest Observer program. NEW WFIRST could also include a coronagraphic imager for direct detection of dust disks and planets around neighboring stars, a high-priority science and technology precursor for future ambitious programs to image Earth-like planets around neighboring stars.
We present a high-precision measurement of the parallax for the 12-day Cepheid SS Canis Majoris, obtained via spatial scanning with the Wide Field Camera 3 (WFC3) on the Hubble Space Telescope (HST). Spatial scanning enables astrometric measurements with a precision of 20-40 muas, an order of magnitude better than pointed observations. SS CMa is the second Cepheid targeted for parallax measurement with HST, and is the first of a sample of eighteen long-period >~ 10 days) Cepheids selected in order to improve the calibration of their period-luminosity relation and eventually permit a determination of the Hubble constant H_0 to better than 2%. The parallax of SS CMa is found to be 348 +/- 38 muas, corresponding to a distance of 2.9 +/- 0.3 kpc. We also present a refinement of the static geometric distortion of WFC3 obtained using spatial scanning observations of calibration fields, with a typical magnitude <~0.01 pixels on scales of 100 pixels.
We present COSMOS-Drift And SHift (DASH), a Hubble Space Telescope WFC3 imaging survey of the COSMOS field in the H_160 filter. The survey comprises 456 individual WFC3 pointings corresponding to an area of 0.49 deg^2 (0.66 deg^2 when including archival data) and reaches a 5 point-source limit of H_160 =25.1 (0.3 aperture). COSMOS-DASH is the widest HST/WFC3 imaging survey in H_160 filter, tripling the extragalactic survey area in the near-infrared at HST resolution. We make the reduced H_160 mosaic available to the community. We use this dataset to measure the sizes of 162 galaxies with log(M_star/M_sun) > 11.3 at 1.5 < z < 3.0, and augment this sample with 748 galaxies at 0.1 < z < 1.5 using archival ACS imaging. We find that the median size of galaxies in this mass range changes with redshift as r_eff = (10.4+/-0.4)(1 +z)^(0.65+/-0.05) kpc. Separating the galaxies into star forming and quiescent galaxies using their restframe U-V and V-J colors, we find no statistical difference between the median sizes of the most massive star-forming and quiescent galaxies at z = 2.5: they are 4.9+/-0.9 kpc and 4.3 +/-0.3 kpc respectively. However, we do find a significant difference in the S`ersic index between the two samples, such that massive quiescent galaxies have higher central densities than star forming galaxies. We extend the size-mass analysis to lower masses by combining it with the 3D-HST/CANDELS sample of van der Wel et al. (2014), and derive empirical relations between size, mass, and redshift. Fitting a relation of the form r_eff = A m_star^a, m_star = M_star/5x10^10 M_sun and r_eff in kpc, we find log A = -0.25 log (1 + z) + 0.79 and a = -0.13 log(1 + z) + 0.27. We also provide relations for the subsamples of star forming and quiescent galaxies. Our results confirm previous studies that were based on smaller samples or ground-based imaging.
The Wide-Field InfraRed Space Telescope (WFIRST) will be capable of delivering precise astrometry for faint sources over the enormous field of view of its main camera, the Wide-Field Imager (WFI). This unprecedented combination will be transformative for the many scientific questions that require precise positions, distances, and velocities of stars. We describe the expectations for the astrometric precision of the WFIRST WFI in different scenarios, illustrate how a broad range of science cases will see significant advances with such data, and identify aspects of WFIRSTs design where small adjustments could greatly improve its power as an astrometric instrument.
We present deep Hubble Space Telescope imaging at the locations of four, potentially hostless, long-faded Type Ia supernovae (SNe Ia) in low-redshift, rich galaxy clusters that were identified in the Multi-Epoch Nearby Cluster Survey. Assuming a steep faint-end slope for the galaxy cluster luminosity function ($alpha_d=-1.5$), our data includes all but $lesssim0.2%$ percent of the stellar mass in cluster galaxies ($lesssim0.005%$ with $alpha_d=-1.0$), a factor of 10 better than our ground-based imaging. Two of the four SNe Ia still have no possible host galaxy associated with them ($M_R>-9.2$), confirming that their progenitors belong to the intracluster stellar population. The third SNe Ia appears near a faint disk galaxy ($M_V=-12.2$) which has a relatively high probability of being a chance alignment. A faint, red, point source coincident with the fourth SN Ias explosion position ($M_V=-8.4$) may be either a globular cluster (GC) or faint dwarf galaxy. We estimate the local surface densities of GCs and dwarfs to show that a GC is more likely, due to the proximity of an elliptical galaxy, but neither can be ruled out. This faint host implies that the SN Ia rate in dwarfs or GCs may be enhanced, but remains within previous observational constraints. We demonstrate that our results do not preclude the use of SNe Ia as bright tracers of intracluster light at higher redshifts, but that it will be necessary to first refine the constraints on their rate in dwarfs and GCs with deep imaging for a larger sample of low-redshift, apparently hostless SNe Ia.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا