Do you want to publish a course? Click here

Confirmation of Hostless Type Ia Supernovae Using Hubble Space Telescope Imaging

165   0   0.0 ( 0 )
 Added by Melissa Graham
 Publication date 2015
  fields Physics
and research's language is English




Ask ChatGPT about the research

We present deep Hubble Space Telescope imaging at the locations of four, potentially hostless, long-faded Type Ia supernovae (SNe Ia) in low-redshift, rich galaxy clusters that were identified in the Multi-Epoch Nearby Cluster Survey. Assuming a steep faint-end slope for the galaxy cluster luminosity function ($alpha_d=-1.5$), our data includes all but $lesssim0.2%$ percent of the stellar mass in cluster galaxies ($lesssim0.005%$ with $alpha_d=-1.0$), a factor of 10 better than our ground-based imaging. Two of the four SNe Ia still have no possible host galaxy associated with them ($M_R>-9.2$), confirming that their progenitors belong to the intracluster stellar population. The third SNe Ia appears near a faint disk galaxy ($M_V=-12.2$) which has a relatively high probability of being a chance alignment. A faint, red, point source coincident with the fourth SN Ias explosion position ($M_V=-8.4$) may be either a globular cluster (GC) or faint dwarf galaxy. We estimate the local surface densities of GCs and dwarfs to show that a GC is more likely, due to the proximity of an elliptical galaxy, but neither can be ruled out. This faint host implies that the SN Ia rate in dwarfs or GCs may be enhanced, but remains within previous observational constraints. We demonstrate that our results do not preclude the use of SNe Ia as bright tracers of intracluster light at higher redshifts, but that it will be necessary to first refine the constraints on their rate in dwarfs and GCs with deep imaging for a larger sample of low-redshift, apparently hostless SNe Ia.



rate research

Read More

We constrain the properties of the progenitor system of the highly reddened Type Ia supernova (SN) 2014J in Messier 82 (M82; d ~ 3.5 Mpc). We determine the SN location using Keck-II K-band adaptive optics images, and we find no evidence for flux from a progenitor system in pre-explosion near-ultraviolet through near-infrared Hubble Space Telescope (HST) images. Our upper limits exclude systems having a bright red giant companion, including symbiotic novae with luminosities comparable to that of RS Ophiuchi. While the flux constraints are also inconsistent with predictions for comparatively cool He-donor systems (T < ~35,000 K), we cannot preclude a system similar to V445 Puppis. The progenitor constraints are robust across a wide range of R_V and A_V values, but significantly greater values than those inferred from the SN light curve and spectrum would yield proportionally brighter luminosity limits. The comparatively faint flux expected from a binary progenitor system consisting of white dwarf stars would not have been detected in the pre-explosion HST imaging. Infrared HST exposures yield more stringent constraints on the luminosities of very cool (T < 3000 K) companion stars than was possible in the case of SN Ia 2011fe.
The existing set of type Ia supernovae (SNe Ia) is now sufficient to detect oscillatory deviations from the canonical $Lambda$CDM cosmology. We determine that the Fourier spectrum of the Pantheon data set of spectroscopically well-observed SNe Ia is consistent with the predictions of $Lambda$CDM. We also develop and describe two complementary techniques for using SNe Ia to constrain those alternate cosmological models that predict deviations from $Lambda$CDM that are oscillatory in conformal time. The first technique uses the reduced $chi^2$ statistic to determine the likelihood that the observed data would result from a given model. The second technique uses bootstrap analysis to determine the likelihood that the Fourier spectrum of a proposed model could result from statistical fluctuations around $Lambda$CDM. We constrain three oscillatory alternate cosmological models: one in which the dark energy equation of state parameter oscillates around the canonical value of $w_{Lambda} = -1$, one in which the energy density of dark energy oscillates around its $Lambda$CDM value, and one in which gravity derives from a scalar field evolving under an oscillatory coupling. We further determine that any alternate cosmological model that produces distance modulus residuals with a Fourier amplitude of $simeq 36$ millimags is strongly ruled out, given the existing data, for frequencies between $simeq 0.08 textrm{Gyr}^ {-1} h_{100}$ and $simeq 80 textrm{Gyr}^ {-1} h_{100}$.
We present an analysis of the maximum light, near ultraviolet (NUV; 2900-5500 A) spectra of 32 low redshift (0.001<z<0.08) Type Ia supernovae (SNe Ia), obtained with the Hubble Space Telescope (HST). We combine this spectroscopic sample with high-quality gri light curves obtained with robotic telescopes to measure photometric parameters, such as stretch, optical colour, and brightness. By comparing our data to a comparable sample of SNe Ia at intermediate-z (0.4<z<0.9), we detect modest spectral evolution (3-sigma), in the sense that our mean low-z NUV spectrum has a depressed flux compared to its intermediate-z counterpart. We also see a strongly increased dispersion about the mean with decreasing wavelength, confirming the results of earlier surveys. These trends are consistent with changes in metallicity as predicted by contemporary SN Ia spectral models. We also examine the properties of various NUV spectral diagnostics in the individual spectra. We find a general correlation between stretch and the velocity (or position) of many NUV spectral features. In particular, we observe that higher stretch SNe have larger Ca II H&K velocities, that also correlate with host galaxy stellar mass. This latter trend is probably driven by the well-established correlation between stretch and stellar mass. We find no trends between UV spectral features and optical colour. Mean spectra constructed according to whether the SN has a positive or negative Hubble residual show very little difference at NUV wavelengths, indicating that the NUV evolution and variation we identify do not directly correlate with Hubble residuals. Our work confirms and strengthens earlier conclusions regarding the complex behaviour of SNe Ia in the NUV spectral region, but suggests the correlations we find are more useful in constraining progenitor models than improving the use of SNe Ia as cosmological probes.
We present ultraviolet (UV) spectroscopy and photometry of four Type Ia supernovae (SNe 2004dt, 2004ef, 2005M, and 2005cf) obtained with the UV prism of the Advanced Camera for Surveys on the Hubble Space Telescope. This dataset provides unique spectral time series down to 2000 Angstrom. Significant diversity is seen in the near maximum-light spectra (~ 2000--3500 Angstrom) for this small sample. The corresponding photometric data, together with archival data from Swift Ultraviolet/Optical Telescope observations, provide further evidence of increased dispersion in the UV emission with respect to the optical. The peak luminosities measured in uvw1/F250W are found to correlate with the B-band light-curve shape parameter dm15(B), but with much larger scatter relative to the correlation in the broad-band B band (e.g., ~0.4 mag versus ~0.2 mag for those with 0.8 < dm15 < 1.7 mag). SN 2004dt is found as an outlier of this correlation (at > 3 sigma), being brighter than normal SNe Ia such as SN 2005cf by ~0.9 mag and ~2.0 mag in the uvw1/F250W and uvm2/F220W filters, respectively. We show that different progenitor metallicity or line-expansion velocities alone cannot explain such a large discrepancy. Viewing-angle effects, such as due to an asymmetric explosion, may have a significant influence on the flux emitted in the UV region. Detailed modeling is needed to disentangle and quantify the above effects.
We report the discovery of a Type Ia supernova (SNIa) at redshift z=1.55 with the infrared detector of the Wide Field Camera 3 (WFC3-IR) on the Hubble Space Telescope (HST). This object was discovered in CANDELS imaging data of the Hubble Ultra Deep Field, and followed as part of the CANDELS+CLASH Supernova project, comprising the SN search components from those two HST multi-cycle treasury programs. This is the highest redshift SNIa with direct spectroscopic evidence for classification. It is also the first SN Ia at z>1 found and followed in the infrared, providing a full light curve in rest-frame optical bands. The classification and redshift are securely defined from a combination of multi-band and multi-epoch photometry of the SN, ground-based spectroscopy of the host galaxy, and WFC3-IR grism spectroscopy of both the SN and host. This object is the first of a projected sample at z>1.5 that will be discovered by the CANDELS and CLASH programs. The full CANDELS+CLASH SN Ia sample will enable unique tests for evolutionary effects that could arise due to differences in SN Ia progenitor systems as a function of redshift. This high-z sample will also allow measurement of the SN Ia rate out to z~2, providing a complementary constraint on SN Ia progenitor models.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا