Do you want to publish a course? Click here

Model study of the electron-phonon coupling in graphene; relative importance of intraband and interband scattering

75   0   0.0 ( 0 )
 Added by Bo Hellsing
 Publication date 2016
  fields Physics
and research's language is English




Ask ChatGPT about the research

The aim of this model study of the electron-phonon coupling in graphene was to find out about the relative importance of the inter- and intraband scattering and which phonon modes are the most active. This was achieved by analyzing the electron-phonon matrix element of the carbon dimer in the unit cell. We found that for the intra molecular orbital matrix elements the longitudinal optical phonon mode is the active phonon mode. The matrix element corresponding to sigma to sigma is greater than the matrix element for pi to pi . The inter molecular orbital scattering pi to sigma is driven by the out-of-plane acoustic phonon mode, while the out-of-plane optical mode does not contribute for symmetry reasons. We found the unexpected result that the magnitude of matrix element of the inter molecular orbital scattering pi to sigmat exceeds the intra molecular orbital scattering pi to pi . These results indicate that the in general not considered inter-band scattering has to be taken into account when analyzing e.g. photo-hole lifetimes and the electron-phonon coupling constant ?from photoemission data of graphene.



rate research

Read More

First-principles studies of the electron-phonon coupling in graphene predict a high coupling strength for the $sigma$ band with $lambda$ values of up to 0.9. Near the top of the $sigma$ band, $lambda$ is found to be $approx 0.7$. This value is consistent with the recently observed kinks in the $sigma$ band dispersion by angle-resolved photoemission. While the photoemission intensity from the $sigma$ band is strongly influenced by matrix elements due to sub-lattice interference, these effects differ significantly for data taken in the first and neighboring Brillouin zones. This can be exploited to disentangle the influence of matrix elements and electron-phonon coupling. A rigorous analysis of the experimentally determined complex self-energy using Kramers-Kronig transformations further supports the assignment of the observed kinks to strong electron-phonon coupling and yields a coupling constant of $0.6(1)$, in excellent agreement with the calculations.
Angle-resolved photoemission spectroscopy reveals pronounced kinks in the dispersion of the sigma band of graphene. Such kinks are usually caused by the combination of a strong electron-boson interaction and the cut-off in the Fermi-Dirac distribution. They are therefore not expected for the $sigma$ band of graphene that has a binding energy of more than 3.5 eV. We argue that the observed kinks are indeed caused by the electron-phonon interaction, but the role of the Fermi-Dirac distribution cutoff is assumed by a cut-off in the density of $sigma$ states. The existence of the effect suggests a very weak coupling of holes in the $sigma$ band not only to the $pi$ electrons of graphene but also to the substrate electronic states. This is confirmed by the presence of such kinks for graphene on several different substrates that all show a strong coupling constant of lambda=1.
Using electrical transport experiments and shot noise thermometry, we investigate electron-phonon heat transfer rate in a suspended bilayer graphene. Contrary to monolayer graphene with heat flow via three-body supercollision scattering, we find that regular electron - optical phonon scattering in bilayer graphene provides the dominant scattering process at electron energies $ gtrsim 0.15$ eV. We determine the strength of these intrinsic heat flow processes of bilayer graphene and find good agreement with theoretical estimates when both zone edge and zone center optical phonons are taken into account.
Using electrical transport experiments and shot noise thermometry, we find strong evidence that supercollision scattering processes by flexural modes are the dominant electron-phonon energy transfer mechanism in high-quality, suspended graphene around room temperature. The power law dependence of the electron-phonon coupling changes from cubic to quintic with temperature. The change of the temperature exponent by two is reflected in the quadratic dependence on chemical potential, which is an inherent feature of two-phonon quantum processes.
We present temperature dependences of the large and the small superconducting gaps measured directly by SnS-Andreev spectroscopy in various Fe-based superconductors and MgB$_2$. The experimental $Delta_{L,S}(T)$ are well-fitted with a two-gap model based on Moskalenko and Suhl system of equations (supplemented with a BCS-integral renormalization). From the the fitting procedure, we estimate the key attribute of superconducting state textemdash relative electron-boson coupling constants and eigen BCS-ratios for both condensates. Our results evidence for a driving role of a strong intraband coupling in the bands with the large gap, whereas interband coupling is rather weak for all the superconductors under study.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا