Do you want to publish a course? Click here

Smash coproducts of bicomonads and Hom-entwining structures

62   0   0.0 ( 0 )
 Added by Xiaohui Zhang
 Publication date 2016
  fields
and research's language is English




Ask ChatGPT about the research

Let $F,G$ be bicomonads on a monoidal category $mathcal{C}$. The aim of this paper is to discuss the smash coproducts of $F$ and $G$. As an application, the smash coproduct of Hom-bialgebras is discussed. Further, the Hom-entwining structure and Hom-entwined modules are investigated.



rate research

Read More

We describe Hom-Lie structures on affine Kac-Moody and related Lie algebras, and discuss the question when they form a Jordan algebra.
In this paper, we mainly present some new solutions of the Hom-Yang-Baxter equation from Hom-algebras, Hom-coalgebras and Hom-Lie algebras, respectively. Also, we prove that these solutions are all self-inverse and give some examples. Finally, we introduce the notion of Hom-Yang-Baxter systems and obtain two kinds of Hom-Yang-Baxter systems.
83 - Lina Song , Rong Tang 2016
In this paper, we introduce the notion of a derivation of a Hom-Lie algebra and construct the corresponding strict Hom-Lie 2-algebra, which is called the derivation Hom-Lie 2-algebra. As applications, we study non-abelian extensions of Hom-Lie algebras. We show that iso- morphism classes of diagonal non-abelian extensions of a Hom-Lie algebra g by a Hom-Lie algebra h are in one-to-one correspondence with homotopy classes of morphisms from g to the derivation Hom-Lie 2-algebra DER(h).
We define the partial group cohomology as the right derived functor of the functor of partial invariants, we relate this cohomology with partial derivations and with the partial augmentation ideal and we show that there exists a Grothendieck spectral sequence relating cohomology of partial smash algebras with partial group cohomology and algebra cohomology.
154 - Lamei Yuan , Jiaxin Li 2021
In this paper, we introduce the notions of biderivations and linear commuting maps of Hom-Lie algebras and superalgebras. Then we compute biderivations of the q-deformed W(2,2) algebra, q-deformed Witt algebra and superalgebras by elementary and direct calculations. As an application, linear commuting maps on these algebras are characterized. Also, we introduce the notions of {alpha}-derivations and {alpha}-biderivations for Hom-Lie algebras and superal- gebras, and we establish a close relation between {alpha}-derivations and {alpha}-biderivations. As an illustration, we prove that the q-deformed W(2;2)-algebra, the q-deformed Witt algebra and superalgebra have no nontrivial {alpha}-biderivations. Finally, we present an example of Hom-Lie superalgebras with nontrivial {alpha}-super-derivations and biderivations.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا