Do you want to publish a course? Click here

Biderivations of Hom-Lie algebras and superalgebras

155   0   0.0 ( 0 )
 Added by Lamei Yuan
 Publication date 2021
  fields
and research's language is English




Ask ChatGPT about the research

In this paper, we introduce the notions of biderivations and linear commuting maps of Hom-Lie algebras and superalgebras. Then we compute biderivations of the q-deformed W(2,2) algebra, q-deformed Witt algebra and superalgebras by elementary and direct calculations. As an application, linear commuting maps on these algebras are characterized. Also, we introduce the notions of {alpha}-derivations and {alpha}-biderivations for Hom-Lie algebras and superal- gebras, and we establish a close relation between {alpha}-derivations and {alpha}-biderivations. As an illustration, we prove that the q-deformed W(2;2)-algebra, the q-deformed Witt algebra and superalgebra have no nontrivial {alpha}-biderivations. Finally, we present an example of Hom-Lie superalgebras with nontrivial {alpha}-super-derivations and biderivations.



rate research

Read More

In this paper we attempt to investigate the super-biderivations of Lie superalgebras. Furthermore, we prove that all super-biderivations on the centerless super-Virasoro algebras are inner super-biderivations. Finally, we study the linear super commuting maps on the centerless super-Virasoro algebras.
83 - Lina Song , Rong Tang 2016
In this paper, we introduce the notion of a derivation of a Hom-Lie algebra and construct the corresponding strict Hom-Lie 2-algebra, which is called the derivation Hom-Lie 2-algebra. As applications, we study non-abelian extensions of Hom-Lie algebras. We show that iso- morphism classes of diagonal non-abelian extensions of a Hom-Lie algebra g by a Hom-Lie algebra h are in one-to-one correspondence with homotopy classes of morphisms from g to the derivation Hom-Lie 2-algebra DER(h).
Let $(L, alpha)$ be a Hom-Lie-Yamaguti superalgebra. We first introduce the representation and cohomology theory of Hom-Lie-Yamaguti superalgebras. Furthermore, we introduce the notions of generalized derivations and representations of $(L, alpha)$ and present some properties. Finally, we investigate the deformations of $(L, alpha)$ by choosing some suitable cohomology.
After endowing with a 3-Lie-Rinehart structure on Hom 3-Lie algebras, we obtain a class of special Hom 3-Lie algebras, which have close relationships with representations of commutative associative algebras. We provide a special class of Hom 3-Lie-Rinehart algebras, called split regular Hom 3-Lie-Rinehart algebras, and we then characterize their structures by means of root systems and weight systems associated to a splitting Cartan subalgebra.
We introduce the notion of 3-Hom-Lie-Rinehart algebra and systematically describe a cohomology complex by considering coefficient modules. Furthermore, we consider extensions of a 3-Hom-Lie-Rinehart algebra and characterize the first cohomology space in terms of the group of automorphisms of an $A$-split abelian extension and the equivalence classes of $A$-split abelian extensions. Finally, we study formal deformations of 3-Hom-Lie-Rinehart algebras.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا