Do you want to publish a course? Click here

Hom-Lie structures on Kac-Moody algebras

67   0   0.0 ( 0 )
 Added by Pasha Zusmanovich
 Publication date 2018
  fields
and research's language is English




Ask ChatGPT about the research

We describe Hom-Lie structures on affine Kac-Moody and related Lie algebras, and discuss the question when they form a Jordan algebra.



rate research

Read More

We determine commutative post-Lie algebra structures on some infinite-dimensional Lie algebras. We show that all commutative post-Lie algebra structures on loop algebras are trivial. This extends the results for finite-dimensional perfect Lie algebras. Furthermore we show that all commutative post-Lie algebra structures on affine Kac--Moody Lie algebras are almost trivial.
We introduce the notion of 3-Hom-Lie-Rinehart algebra and systematically describe a cohomology complex by considering coefficient modules. Furthermore, we consider extensions of a 3-Hom-Lie-Rinehart algebra and characterize the first cohomology space in terms of the group of automorphisms of an $A$-split abelian extension and the equivalence classes of $A$-split abelian extensions. Finally, we study formal deformations of 3-Hom-Lie-Rinehart algebras.
83 - Lina Song , Rong Tang 2016
In this paper, we introduce the notion of a derivation of a Hom-Lie algebra and construct the corresponding strict Hom-Lie 2-algebra, which is called the derivation Hom-Lie 2-algebra. As applications, we study non-abelian extensions of Hom-Lie algebras. We show that iso- morphism classes of diagonal non-abelian extensions of a Hom-Lie algebra g by a Hom-Lie algebra h are in one-to-one correspondence with homotopy classes of morphisms from g to the derivation Hom-Lie 2-algebra DER(h).
After endowing with a 3-Lie-Rinehart structure on Hom 3-Lie algebras, we obtain a class of special Hom 3-Lie algebras, which have close relationships with representations of commutative associative algebras. We provide a special class of Hom 3-Lie-Rinehart algebras, called split regular Hom 3-Lie-Rinehart algebras, and we then characterize their structures by means of root systems and weight systems associated to a splitting Cartan subalgebra.
The set HLie(n) of the n-dimensional Hom-Lie algebras over an algebraically closed field of characteristic zero is provided with a structure of algebraic subvariety of the affine plane of dimension n^2(n-1)/2}. For n=3, these two sets coincide, for n=4 it is an hypersurface in K^{24}. For n>4, we describe the scheme of polynomial equations which define HLie(n). We determine also what are the classes of Hom-Lie algebras which are P-algebras where P is a binary quadratic operads.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا