No Arabic abstract
We study the impact of one light sterile neutrino on the prospective data expected to come from the two presently running long-baseline experiments T2K and NOvA when they will accumulate their full planned exposure. Introducing for the first time, the bi-probability representation in the 4-flavor framework, commonly used in the 3-flavor scenario, we present a detailed discussion of the behavior of the numu to nue and numubar to nuebar transition probabilities in the 3+1 scheme. We also perform a detailed sensitivity study of these two experiments (both in the stand-alone and combined modes) to assess their discovery reach in the presence of a light sterile neutrino. For realistic benchmark values of the mass-mixing parameters (as inferred from the existing global short-baseline fits), we find that the performance of both these experiments in claiming the discovery of the CP-violation induced by the standard CP-phase delta13 equivalent to delta, and the neutrino mass hierarchy get substantially deteriorated. The exact loss of sensitivity depends on the value of the unknown CP-phase delta14. Finally, we estimate the discovery potential of total CP-violation (i.e., induced simultaneously by the two CP-phases delta13 and delta14), and the capability of the two experiments of reconstructing the true values of such CP-phases. The typical (1 sigma level) uncertainties on the reconstructed phases are approximately 40 degree for delta13 and 50 degree for delta14.
We study in detail the impact of a light sterile neutrino in the interpretation of the latest data of the long baseline experiments NO$ u$A and T2K, assessing the robustness/fragility of the estimates of the standard 3-flavor parameters with respect to the perturbations induced in the 3+1 scheme. We find that all the basic features of the 3-flavor analysis, including the weak indication ($sim$1.4$sigma$) in favor of the inverted neutrino mass ordering, the preference for values of the CP-phase $delta_{13} sim 1.2pi$, and the substantial degeneracy of the two octants of $theta_{23}$, all remain basically unaltered in the 4-flavor scheme. Our analysis also demonstrates that it is possible to attain some constraints on the new CP-phase $delta_{14}$. Finally, we point out that, differently from non-standard neutrino interactions, light sterile neutrinos are not capable to alleviate the tension recently emerged between NO$ u$A and T2K in the appearance channel.
ESS$ u$SB is a proposed neutrino super-beam project at the ESS facility. We study the performance of this setup in the presence of a light eV-scale sterile neutrino, considering 540 km baseline with 2 years (8 years) of $ u$ ($bar u$) run-plan. This baseline offers the possibility to work around the second oscillation maximum, providing high sensitivity towards CP-violation (CPV). We explore in detail its capability in resolving CPV generated by the standard CP phase $delta_{13}$, the new CP phase $delta_{14}$, and the octant of $theta_{23}$. We find that the sensitivity to CPV induced by $delta_{13}$ deteriorates noticeably when going from $3 u$ to 4$ u$ case. The two phases $delta_{13}$ and $delta_{14}$ can be reconstructed with a 1$sigma$ uncertainty of $sim15^0$ and $ sim35^0$ respectively. Concerning the octant of $theta_{23}$, we find poor sensitivity in both $3 u$ and $4 u$ schemes. Our results show that a setup like ESS$ u$SB working around the second oscillation maximum with a baseline of 540 km, performs quite well to explore CPV in 3$ u$ scheme, but it is not optimal for studying CP properties in 3+1 scheme.
We investigate the implications of one light eV scale sterile neutrino on the physics potential of the proposed long-baseline experiment DUNE. If the future short-baseline experiments confirm the existence of sterile neutrinos, then it can affect the mass hierarchy (MH) and CP-violation (CPV) searches at DUNE. The MH sensitivity still remains above 5$sigma$ if the three new mixing angles ($theta_{14}, theta_{24}, theta_{34}$) are all close to $theta_{13}$. In contrast, it can decrease to 4$sigma$ if the least constrained mixing angle $theta_{34}$ is close to its upper limit $sim 30^0$. We also assess the sensitivity to the CPV induced both by the standard CP-phase $delta_{13} equiv delta$, and the new CP-phases $delta_{14}$ and $delta_{34}$. In the 3+1 scheme, the discovery potential of CPV induced by $delta_{13}$ gets deteriorated compared to the 3$ u$ case. In particular, the maximal sensitivity (reached around $delta_{13}$ $sim$ $pm$ $90^0$) decreases from $5sigma$ to $4sigma$ if all the three new mixing angles are close to $theta_{13}$. It can further diminish to almost $3sigma$ if $theta_{34}$ is large ($sim 30^0$). The sensitivity to the CPV due to $delta_{14}$ can reach 3$sigma$ for an appreciable fraction of its true values. Interestingly, $theta_{34}$ and its associated phase $delta_{34}$ can influence both the $ u_e$ appearance and $ u_mu$ disappearance channels via matter effects, which in DUNE are pronounced. Hence, DUNE can also probe CPV induced by $delta_{34}$ provided $theta_{34}$ is large. We also reconstruct the two phases $delta_{13}$ and $delta_{14}$. The typical 1$sigma$ uncertainty on $delta_{13}$ ($delta_{14}$) is $sim20^0$ ($30^0$) if $theta_{34} =0$. The reconstruction of $delta_{14}$ (but not that of $delta_{13}$) degrades if $theta_{34}$ is large.
Present global fits of world neutrino data hint towards non-maximal $theta_{23}$ with two nearly degenerate solutions, one in the lower octant ($theta_{23} <pi/4$), and the other in the higher octant ($theta_{23} >pi/4$). This octant ambiguity of $theta_{23}$ is one of the fundamental issues in the neutrino sector, and its resolution is a crucial goal of next-generation long-baseline (LBL) experiments. In this letter, we address for the first time, the impact of a light eV-scale sterile neutrino towards such a measurement, taking the Deep Underground Neutrino Experiment (DUNE) as a case study. In the so-called 3+1 scheme involving three active and one sterile neutrino, the $ u_mu to u_e$ transition probability probed in the LBL experiments acquires a new interference term via active-sterile oscillations. We find that this novel interference term can mimic a swap of the $theta_{23}$ octant, even if one uses the information from both neutrino and antineutrino channels. As a consequence, the sensitivity to the octant of $theta_{23}$ can be completely lost and this may have serious implications in our understanding of neutrinos from both the experimental and theoretical perspectives.
A precise measurement of the atmospheric mass-squared splitting |Delta m^2_{mumu}| is crucial to establish the three-flavor paradigm and to constrain the neutrino mass models. In addition, a precise value of |Delta m^2_{mumu}| will significantly enhance the hierarchy reach of future medium-baseline reactor experiments like JUNO and RENO-50. In this work, we explore the precision in |Delta m^2_{mumu}| that will be available after the full runs of T2K and NOvA. We find that the combined data will be able to improve the precision in |Delta m^2_{mumu}| to sub-percent level for maximal 2-3 mixing. Depending on the true value of sin^2theta_{23} in the currently-allowed 3 sigma range, the precision in |Delta m^2_{mumu}| will vary from 0.87% to 1.24%. We further demonstrate that this is a robust measurement as it remains almost unaffected by the present uncertainties in theta_{13}, delta_{CP}, the choice of mass hierarchy, and the systematic errors.