Do you want to publish a course? Click here

Physics Reach of DUNE with a Light Sterile Neutrino

112   0   0.0 ( 0 )
 Added by Antonio Palazzo
 Publication date 2016
  fields
and research's language is English




Ask ChatGPT about the research

We investigate the implications of one light eV scale sterile neutrino on the physics potential of the proposed long-baseline experiment DUNE. If the future short-baseline experiments confirm the existence of sterile neutrinos, then it can affect the mass hierarchy (MH) and CP-violation (CPV) searches at DUNE. The MH sensitivity still remains above 5$sigma$ if the three new mixing angles ($theta_{14}, theta_{24}, theta_{34}$) are all close to $theta_{13}$. In contrast, it can decrease to 4$sigma$ if the least constrained mixing angle $theta_{34}$ is close to its upper limit $sim 30^0$. We also assess the sensitivity to the CPV induced both by the standard CP-phase $delta_{13} equiv delta$, and the new CP-phases $delta_{14}$ and $delta_{34}$. In the 3+1 scheme, the discovery potential of CPV induced by $delta_{13}$ gets deteriorated compared to the 3$ u$ case. In particular, the maximal sensitivity (reached around $delta_{13}$ $sim$ $pm$ $90^0$) decreases from $5sigma$ to $4sigma$ if all the three new mixing angles are close to $theta_{13}$. It can further diminish to almost $3sigma$ if $theta_{34}$ is large ($sim 30^0$). The sensitivity to the CPV due to $delta_{14}$ can reach 3$sigma$ for an appreciable fraction of its true values. Interestingly, $theta_{34}$ and its associated phase $delta_{34}$ can influence both the $ u_e$ appearance and $ u_mu$ disappearance channels via matter effects, which in DUNE are pronounced. Hence, DUNE can also probe CPV induced by $delta_{34}$ provided $theta_{34}$ is large. We also reconstruct the two phases $delta_{13}$ and $delta_{14}$. The typical 1$sigma$ uncertainty on $delta_{13}$ ($delta_{14}$) is $sim20^0$ ($30^0$) if $theta_{34} =0$. The reconstruction of $delta_{14}$ (but not that of $delta_{13}$) degrades if $theta_{34}$ is large.



rate research

Read More

Present global fits of world neutrino data hint towards non-maximal $theta_{23}$ with two nearly degenerate solutions, one in the lower octant ($theta_{23} <pi/4$), and the other in the higher octant ($theta_{23} >pi/4$). This octant ambiguity of $theta_{23}$ is one of the fundamental issues in the neutrino sector, and its resolution is a crucial goal of next-generation long-baseline (LBL) experiments. In this letter, we address for the first time, the impact of a light eV-scale sterile neutrino towards such a measurement, taking the Deep Underground Neutrino Experiment (DUNE) as a case study. In the so-called 3+1 scheme involving three active and one sterile neutrino, the $ u_mu to u_e$ transition probability probed in the LBL experiments acquires a new interference term via active-sterile oscillations. We find that this novel interference term can mimic a swap of the $theta_{23}$ octant, even if one uses the information from both neutrino and antineutrino channels. As a consequence, the sensitivity to the octant of $theta_{23}$ can be completely lost and this may have serious implications in our understanding of neutrinos from both the experimental and theoretical perspectives.
We investigate the potential for the Deep Underground Neutrino Experiment (DUNE) to probe the existence and effects of a fourth neutrino mass-eigenstate. We study the mixing of the fourth mass-eigenstate with the three active neutrinos of the Standard Model, including the effects of new sources of CP-invariance violation, for a wide range of new mass-squared differences, from lower than 10^-5 eV^2 to higher than 1 eV^2. DUNE is sensitive to previously unexplored regions of the mixing angle - mass-squared difference parameter space. If there is a fourth neutrino, in some regions of the parameter space, DUNE is able to measure the new oscillation parameters (some very precisely) and clearly identify two independent sources of CP-invariance violation. Finally, we use the hypothesis that there are four neutrino mass-eigenstates in order to ascertain how well DUNE can test the limits of the three-massive-neutrinos paradigm. In this way, we briefly explore whether light sterile neutrinos can serve as proxies for other, in principle unknown, phenomena that might manifest themselves in long-baseline neutrino oscillation experiments.
We study the impact of one light sterile neutrino on the prospective data expected to come from the two presently running long-baseline experiments T2K and NOvA when they will accumulate their full planned exposure. Introducing for the first time, the bi-probability representation in the 4-flavor framework, commonly used in the 3-flavor scenario, we present a detailed discussion of the behavior of the numu to nue and numubar to nuebar transition probabilities in the 3+1 scheme. We also perform a detailed sensitivity study of these two experiments (both in the stand-alone and combined modes) to assess their discovery reach in the presence of a light sterile neutrino. For realistic benchmark values of the mass-mixing parameters (as inferred from the existing global short-baseline fits), we find that the performance of both these experiments in claiming the discovery of the CP-violation induced by the standard CP-phase delta13 equivalent to delta, and the neutrino mass hierarchy get substantially deteriorated. The exact loss of sensitivity depends on the value of the unknown CP-phase delta14. Finally, we estimate the discovery potential of total CP-violation (i.e., induced simultaneously by the two CP-phases delta13 and delta14), and the capability of the two experiments of reconstructing the true values of such CP-phases. The typical (1 sigma level) uncertainties on the reconstructed phases are approximately 40 degree for delta13 and 50 degree for delta14.
We study the physics reach of the long-baseline oscillation analysis of the DUNE experiment when realistic simulations are used to estimate its neutrino energy reconstruction capabilities. Our studies indicate that significant improvements in energy resolution compared to what is customarily assumed are plausible. This improved energy resolution can increase the sensitivity to leptonic CP violation in two ways. On the one hand, the CP-violating term in the oscillation probability has a characteristic energy dependence that can be better reproduced. On the other hand, the second oscillation maximum, especially sensitive to $delta_{CP}$, is better reconstructed. These effects lead to a significant improvement in the fraction of values of $delta_{CP}$ for which a $5 sigma$ discovery of leptonic CP-violation would be possible. The precision of the $delta_{CP}$ measurement could also be greatly enhanced, with a reduction of the maximum uncertainties from $26^circ$ to $18^circ$ for a 300~MW$cdot$kt$cdot$yr exposure. We therefore believe that this potential gain in physics reach merits further investigations of the detector performance achievable in DUNE.
Light sterile neutrinos have been introduced as an explanation for a number of oscillation signals at $Delta m^2 sim 1$ eV$^2$. Neutrino oscillations at relatively short baselines provide a probe of these possible new states. This paper describes an accelerator-based experiment using neutral current coherent neutrino-nucleus scattering to strictly search for active-to-sterile neutrino oscillations. This experiment could, thus, definitively establish the existence of sterile neutrinos and provide constraints on their mixing parameters. A cyclotron-based proton beam can be directed to multiple targets, producing a low energy pion and muon decay-at-rest neutrino source with variable distance to a single detector. Two types of detectors are considered: a germanium-based detector inspired by the CDMS design and a liquid argon detector inspired by the proposed CLEAR experiment.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا