Do you want to publish a course? Click here

Time Evolution of Gaussian Wave Packets under Dirac Equation with Fluctuating Mass and Potential

96   0   0.0 ( 0 )
 Added by Atis Yosprakob
 Publication date 2016
  fields Physics
and research's language is English




Ask ChatGPT about the research

Localization of relativistic particles have been of great research interests over many decades. We investigate the time evolution of the Gaussian wave packets governed by the one dimensional Dirac equation. For the free Dirac equation, we obtain the evolution profiles analytically in many approximation regimes, and numerical simulations consistent with other numerical schemes. Interesting behaviors such as Zitterbewegung and Klein paradox are exhibited. In particular, the dispersion rate as a function of mass is calculated, and it yields an interesting result that super-massive and massless particles both exhibit no dispersion in free space. For the Dirac equation with random potential or mass, we employ the Chebyshev polynomials expansion of the propagator operator to numerically investigate the probability profiles of the displacement distribution when the potential or mass is uniformly distributed. We observe that the widths of the Gaussian wave packets decrease approximately with the power law of order $o(s^{- u})$ with $frac{1}{2}< u<1$ as the randomness strength $s$ increases. This suggests an onset of localization, but it is weaker than Anderson localization.



rate research

Read More

70 - M. Turek , P. Rozmej 2004
Time evolution of radial wave packets built from the eigenstates of Dirac equation for a hydrogenic systems is considered. Radial wave packets are constructed from the states of different $n$ quantum number and the same lowest angular momentum. In general they exhibit a kind of breathing motion with dispersion and (partial) revivals. Calculations show that for some particular preparations of the wave packet one can observe interesting effects in spin motion, coming from inherent entanglement of spin and orbital degrees of freedom. These effects manifest themselves through some oscillations in the mean values of spin operators and through changes of spatial probability density carried by upper and lower components of the wave function. It is also shown that the characteristic time scale of predicted effects (called $T_{mathrm{ls}}$) is for radial wave packets much smaller than in other cases, reaching values comparable to (or even less than) the time scale for the wave packet revival.
We propose and experimentally demonstrate a method to prepare a nonspreading atomic wave packet. Our technique relies on a spatially modulated absorption constantly chiseling away from an initially broad de Broglie wave. The resulting contraction is balanced by dispersion due to Heisenbergs uncertainty principle. This quantum evolution results in the formation of a nonspreading wave packet of Gaussian form with a spatially quadratic phase. Experimentally, we confirm these predictions by observing the evolution of the momentum distribution. Moreover, by employing interferometric techniques, we measure the predicted quadratic phase across the wave packet. Nonspreading wave packets of this kind also exist in two space dimensions and we can control their amplitude and phase using optical elements.
We find a relationship between the dynamics of the Gaussian wave packet and the dynamics of the corresponding Gaussian Wigner function from the Hamiltonian/symplectic point of view. The main result states that the momentum map corresponding to the natural action of the symplectic group on the Siegel upper half space yields the covariance matrix of the corresponding Gaussian Wigner function. This fact, combined with Kostants coadjoint orbit covering theorem, establishes a symplectic/Poisson-geometric connection between the two dynamics. The Hamiltonian formulation naturally gives rise to corrections to the potential terms in the dynamics of both the wave packet and the Wigner function, thereby resulting in slightly different sets of equations from the conventional classical ones. We numerically investigate the effect of the correction term and demonstrate that it improves the accuracy of the dynamics as an approximation to the dynamics of expectation values of observables.
The classical and quantum representations of thermal equilibrium are strikingly different, even for free, non-interacting particles. While the first involves particles with well-defined positions and momenta, the second usually involves energy eigenstates that are delocalized over a confining volume. In this paper, we derive convex decompositions of the density operator for non-interacting, non-relativistic particles in thermal equilibrium that allow for a connection between these two descriptions. Associated with each element of the decomposition of the N-particle thermal state is an N-body wave function, described as a set of wave packets; the distribution of the average positions and momenta of the wave packets can be linked to the classical description of thermal equilibrium, while the different amplitudes in the wave function capture the statistics relevant for fermions or bosons.
The Dirac equation, with position-dependent mass, is solved approximately for the generalized Hulth{e}n potential with any spin-orbit quantum number $kappa$. Solutions are obtained by using an appropriate coordinate transformation, reducing the effective mass Dirac equation to a Schr{o}dinger-like differential equation. The Nikiforov-Uvarov method is used in the calculations to obtain energy eigenvalues and the corresponding wave functions. Numerical results are compared with those given in the literature. Analytical results are also obtained for the case of constant mass and the results are in good agreement with the literature.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا