Do you want to publish a course? Click here

Approximate Analytical Solutions of the Effective Mass Dirac Equation for the generalized Hulthen Potential with any kappa-Value

262   0   0.0 ( 0 )
 Added by Ramazan Sever
 Publication date 2010
  fields Physics
and research's language is English




Ask ChatGPT about the research

The Dirac equation, with position-dependent mass, is solved approximately for the generalized Hulth{e}n potential with any spin-orbit quantum number $kappa$. Solutions are obtained by using an appropriate coordinate transformation, reducing the effective mass Dirac equation to a Schr{o}dinger-like differential equation. The Nikiforov-Uvarov method is used in the calculations to obtain energy eigenvalues and the corresponding wave functions. Numerical results are compared with those given in the literature. Analytical results are also obtained for the case of constant mass and the results are in good agreement with the literature.



rate research

Read More

The Dirac-Morse problem are investigated within the framework of an approximation to the term proportional to $1/r^2$ in the view of the position-dependent mass formalism. The energy eigenvalues and corresponding wave functions are obtained by using the parametric generalization of the Nikiforov-Uvarov method for any $kappa$-value. It is also studied the approximate energy eigenvalues, and corresponding wave functions in the case of the constant-mass for pseudospin, and spin cases, respectively.
The Klein-Gordon equation is solved approximately for the Hulth{e}n potential for any angular momentum quantum number $ell$ with the position-dependent mass. Solutions are obtained reducing the Klein-Gordon equation into a Schr{o}dinger-like differential equation by using an appropriate coordinate transformation. The Nikiforov-Uvarov method is used in the calculations to get an energy eigenvalue and and the wave functions. It is found that the results in the case of constant mass are in good agreement with the ones obtained in the literature.
A general form of the effective mass Schrodinger equation is solved exactly for Hulthen potential. Nikiforov-Uvarov method is used to obtain energy eigenvalues and the corresponding wave functions. A free parameter is used in the transformation of the wave function.
The solvability of The Dirac equation is studied for the exponential-type potentials with the pseudospin symmetry by using the parametric generalization of the Nikiforov-Uvarov method. The energy eigenvalue equation, and the corresponding Dirac spinors for Morse, Hulthen, and q-deformed Rosen-Morse potentials are obtained within the framework of an approximation to the spin-orbit coupling term, so the solutions are given for any value of the spin-orbit quantum number $kappa=0$, or $kappa eq 0$.
Approximate bound state solutions of the Dirac equation with the Hulthen plus a new generalized ring-shaped (RS) potential are obtained for any arbitrary -state. The energy eigenvalue equation and the corresponding two-component wave function are calculated by solving the radial and angular wave equations within a recently introduced shortcut of Nikiforov-Uvarov (NU) method. The solutions of the radial and polar angular parts of the wave function are given in terms of the Jacobi polynomials. We use an exponential approximation in terms of the Hulthen potential parameters to deal with the strong singular centrifugal potential term Under the limiting case, the solution can be easily reduced to the solution of the Schrodinger equation with a new ring-shaped Hulthen potential.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا