No Arabic abstract
We investigate the effect of massive graviton on the holographic thermalization process. Before doing this, we first find out the generalized Vaidya-AdS solutions in the de Rham-Gabadadze-Tolley (dRGT) massive gravity by directly solving the gravitational equations. Then, we study the thermodynamics of these Vaidya-AdS solutions by using the Minsner-Sharp energy and unified first law, which also shows that the massive gravity is in a thermodynamic equilibrium state. Moreover, we adopt the two-point correlation function at equal time to explore the thermalization process in the dual field theory, and to see how the graviton mass parameter affects this process from the viewpoint of AdS/CFT correspondence. Our results show that the graviton mass parameter will increase the holographic thermalization process.
We present a kind of generalized Vaidya solutions in a generic Lovelock gravity. This solution generalizes the simple case in Gauss-Bonnet gravity reported recently by some authors. We study the thermodynamics of apparent horizon in this generalized Vaidya spacetime. Treating those terms except for the Einstein tensor as an effective energy-momentum tensor in the gravitational field equations, and using the unified first law in Einstein gravity theory, we obtain an entropy expression for the apparent horizon. We also obtain an energy expression of this spacetime, which coincides with the generalized Misner-Sharp energy proposed by Maeda and Nozawa in Lovelock gravity.
We introduce higher-derivative Gauss-Bonnet correction terms in the gravity sector and we relate the modified gravity theory in the bulk to the strongly coupled quantum field theory on a de Sitter boundary. We study the process of holographic thermalization by examining three nonlocal observables, the two-point function, the Wilson loop and the holographic entanglement entropy. We study the time evolution of these three observables and we find that as the strength of the Gauss-Bonnet coupling is increased, the saturation time of the thermalization process to reach thermal equilibrium becomes shorter with the dominant effect given by the holographic entanglement entropy.
We study the holographic superconductor-normal metal-superconductor (SNS) Josephon junction in the massive gravity. In the homogeneous case of the chemical potential, we find that the graviton mass will make the normal metal-superconductor phase transition harder to take place. In the holographic model of Josephson junction, it is found that the maximal tunneling current will decrease according to the graviton mass. Besides, the coherence length of the junction decreases as well with respect to the graviton mass. If one interprets the graviton mass as the effect of momentum dissipation in the boundary field theory, it indicates that the stronger the momentum dissipation is, the smaller the coherence length is.
Time dependent perturbations of states in the holographic dual of a 3+1 dimensional confining theory are considered. The perturbations are induced by varying the coupling to the theorys most relevant operator. The dual gravitational theory belongs to a class of Einstein-dilaton theories which exhibit a mass gap at zero temperature and a first order deconfining phase transition at finite temperature. The perturbation is realized in various thermal bulk solutions by specifying time dependent boundary conditions on the scalar, and we solve the fully backreacted Einstein-dilaton equations of motion subject to these boundary conditions. We compute the characteristic time scale of many thermalization processes, noting that in every case we examine, this time scale is determined by the imaginary part of the lowest lying quasi-normal mode of the final state black brane. We quantify the dependence of this final state on parameters of the quench, and construct a dynamical phase diagram. Further support for a universal scaling regime in the abrupt quench limit is provided.
Dynamical solutions are always of interest to people in gravity theories. We derive a series of generalized Vaidya solutions in the $n$-dimensional de Rham-Gabadadze-Tolley (dRGT) massive gravity with a singular reference metric. Similar to the case of the Einstein gravity, the generalized Vaidya solution can describe shining/absorbing stars. Moreover, we also find a more general Vaidya-like solution by introducing a more generic matter field than the pure radiation in the original Vaidya spacetime. As a result, the above generalized Vaidya solution is naturally included in this Vaidya-like solution as a special case. We investigate the thermodynamics for this Vaidya-like spacetime by using the unified first law, and present the generalized Misner-Sharp mass. Our results show that the generalized Minser-Sharp mass does exist in this spacetime. In addition, the usual Clausius relation $delta Q= TdS$ holds on the apparent horizon, which implicates that the massive gravity is in a thermodynamic equilibrium state. We find that the work density vanishes for the generalized Vaidya solution, while it appears in the more general Vaidya-like solution. Furthermore, the covariant generalized Minser-Sharp mass in the $n$-dimensional de Rham-Gabadadze-Tolley massive gravity is also derived by taking a general metric ansatz into account.