Do you want to publish a course? Click here

Quantum coarse-grained entropy and thermodynamics

140   0   0.0 ( 0 )
 Publication date 2017
  fields Physics
and research's language is English




Ask ChatGPT about the research

We extend classical coarse-grained entropy, commonly used in many branches of physics, to the quantum realm. We find two coarse-grainings, one using measurements of local particle numbers and then total energy, and the second using local energy measurements, which lead to an entropy that is defined outside of equilibrium, is in accord with the thermodynamic entropy for equilibrium systems, and reaches the thermodynamic entropy in the long-time limit, even in genuinely isolated quantum systems. This answers the long-standing conceptual problem, as to which entropy is relevant for the formulation of the second thermodynamic law in closed quantum systems. This entropy could be in principle measured, especially now that experiments on such systems are becoming feasible.



rate research

Read More

We investigate the detailed properties of Observational entropy, introduced by v{S}afr{a}nek et al. [Phys. Rev. A 99, 010101 (2019)] as a generalization of Boltzmann entropy to quantum mechanics. This quantity can involve multiple coarse-grainings, even those that do not commute with each other, without losing any of its properties. It is well-defined out of equilibrium, and for some coarse-grainings it generically rises to the correct thermodynamic value even in a genuinely isolated quantum system. The quantity contains several other entropy definitions as special cases, it has interesting information-theoretic interpretations, and mathematical properties -- such as extensivity and upper and lower bounds -- suitable for an entropy. Here we describe and provide proofs for many of its properties, discuss its interpretation and connection to other quantities, and provide numerous simulations and analytic arguments supporting the claims of its relationship to thermodynamic entropy. This quantity may thus provide a clear and well-defined foundation on which to build a satisfactory understanding of the second thermodynamical law in quantum mechanics.
We develop the framework of classical Observational entropy, which is a mathematically rigorous and precise framework for non-equilibrium thermodynamics, explicitly defined in terms of a set of observables. Observational entropy can be seen as a generalization of Boltzmann entropy to systems with indeterminate initial conditions, and describes the knowledge achievable about the system by a macroscopic observer with limited measurement capabilities; it becomes Gibbs entropy in the limit of perfectly fine-grained measurements. This quantity, while previously mentioned in the literature, has been investigated in detail only in the quantum case. We describe this framework reasonably pedagogically, then show that in this framework, certain choices of coarse-graining lead to an entropy that is well-defined out of equilibrium, additive on independent systems, and that grows towards thermodynamic entropy as the system reaches equilibrium, even for systems that are genuinely isolated. Choosing certain macroscopic regions, this dynamical thermodynamic entropy measures how close these regions are to thermal equilibrium. We also show that in the given formalism, the correspondence between classical entropy (defined on classical phase space) and quantum entropy (defined on Hilbert space) becomes surprisingly direct and transparent, while manifesting differences stemming from non-commutativity of coarse-grainings and from non-existence of a direct classical analogue of quantum energy eigenstates.
Recent years have seen an enormously revived interest in the study of thermodynamic notions in the quantum regime. This applies both to the study of notions of work extraction in thermal machines in the quantum regime, as well as to questions of equilibration and thermalisation of interacting quantum many-body systems as such. In this work we bring together these two lines of research by studying work extraction in a closed system that undergoes a sequence of quenches and equilibration steps concomitant with free evolutions. In this way, we incorporate an important insight from the study of the dynamics of quantum many body systems: the evolution of closed systems is expected to be well described, for relevant observables and most times, by a suitable equilibrium state. We will consider three kinds of equilibration, namely to (i) the time averaged state, (ii) the Gibbs ensemble and (iii) the generalised Gibbs ensemble (GGE), reflecting further constants of motion in integrable models. For each effective description, we investigate notions of entropy production, the validity of the minimal work principle and properties of optimal work extraction protocols. While we keep the discussion general, much room is dedicated to the discussion of paradigmatic non-interacting fermionic quantum many-body systems, for which we identify significant differences with respect to the role of the minimal work principle. Our work not only has implications for experiments with cold atoms, but also can be viewed as suggesting a mindset for quantum thermodynamics where the role of the external heat baths is instead played by the system itself, with its internal degrees of freedom bringing coarse-grained observables to equilibrium.
In the past several years, observational entropy has been developed as both a (time-dependent) quantum generalization of Boltzmann entropy, and as a rather general framework to encompass classical and quantum equilibrium and non-equilibrium coarse-grained entropy. In this paper we review the construction, interpretation, most important properties, and some applications of this framework. The treatment is self-contained and relatively pedagogical, aimed at a broad class of researchers.
One can think of some physical evolutions as being the emergent-effective result of a microscopic discrete model. Inspired by classical coarse-graining procedures, we provide a simple procedure to coarse-grain color-blind quantum cellular automata that follow Goldilocks rules. The procedure consists in (i) space-time grouping the quantum cellular automaton (QCA) in cells of size $N$; (ii) projecting the states of a cell onto its borders, connecting them with the fine dynamics; (iii) describing the overall dynamics by the border states, that we call signals; and (iv) constructing the coarse-grained dynamics for different sizes $N$ of the cells. A byproduct of this simple toy-model is a general discrete analog of the Stokes law. Moreover we prove that in the spacetime limit, the automaton converges to a Dirac free Hamiltonian. The QCA we introduce here can be implemented by present-day quantum platforms, such as Rydberg arrays, trapped ions, and superconducting qbits. We hope our study can pave the way to a richer understanding of those systems with limited resolution.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا