No Arabic abstract
We validate a $R_p=2.32pm 0.24R_oplus$ planet on a close-in orbit ($P=2.260455pm 0.000041$ days) around K2-28 (EPIC 206318379), a metal-rich M4-type dwarf in the Campaign 3 field of the K2 mission. Our follow-up observations included multi-band transit observations from the optical to the near infrared, low-resolution spectroscopy, and high-resolution adaptive-optics (AO) imaging. We perform a global fit to all the observed transits using a Gaussian process-based method and show that the transit depths in all passbands adopted for the ground-based transit follow-ups ($r_2, z_mathrm{s,2}, J, H, K_mathrm{s}$) are within $sim 2sigma$ of the K2 value. Based on a model of the background stellar population and the absence of nearby sources in our AO imaging, we estimate the probability that a background eclipsing binary could cause a false positive to be $< 2times 10^{-5}$. We also show that K2-28 cannot have a physically associated companion of stellar type later than M4, based on the measurement of almost identical transit depths in multiple passbands. There is a low probability for a M4 dwarf companion ($approx 0.072_{-0.04}^{+0.02}$), but even if this were the case, the size of K2-28b falls within the planetary regime. K2-28b has the same radius (within $1sigma$) and experiences a similar irradiation from its host star as the well-studied GJ~1214b. Given the relative brightness of K2-28 in the near infrared ($m_mathrm{Kep}=14.85$ mag and $m_H=11.03$ mag) and relatively deep transit ($0.6-0.7%$), a comparison between the atmospheric properties of these two planets with future observations would be especially interesting.
We report on the confirmation that the candidate transits observed for the star EPIC 211525389 are due to a short-period Neptune-sized planet. The host star, located in K2 campaign field 5, is a metal-rich ([Fe/H] = 0.26$pm$0.05) G-dwarf (T_eff = 5430$pm$70 K and log g = 4.48$pm$0.09), based on observations with the High Dispersion Spectrograph (HDS) on the Subaru 8.2m telescope. High-spatial resolution AO imaging with HiCIAO on the Subaru telescope excludes faint companions near the host star, and the false positive probability of this target is found to be <$10^{-6}$ using the open source vespa code. A joint analysis of transit light curves from K2 and additional ground-based multi-color transit photometry with MuSCAT on the Okayama 1.88m telescope gives the orbital period of P = 8.266902$pm$0.000070 days and consistent transit depths of $R_p/R_star sim 0.035$ or $(R_p/R_star)^2 sim 0.0012$. The transit depth corresponds to a planetary radius of $R_p = 3.59_{-0.39}^{+0.44} R_{oplus}$, indicating that EPIC 211525389 b is a short-period Neptune-sized planet. Radial velocities of the host star, obtained with the Subaru HDS, lead to a 3sigma upper limit of 90 $M_{oplus} (0.00027 M_{odot})$ on the mass of EPIC 211525389 b, confirming its planetary nature. We expect this planet, newly named K2-105 b, to be the subject of future studies to characterize its mass, atmosphere, spin-orbit (mis)alignment, as well as investigate the possibility of additional planets in the system.
We report on the discovery of three transiting super-Earths around K2-155 (EPIC 210897587), a relatively bright early M dwarf ($V=12.81$ mag) observed during Campaign 13 of the NASA K2 mission. To characterize the system and validate the planet candidates, we conducted speckle imaging and high-dispersion optical spectroscopy, including radial velocity measurements. Based on the K2 light curve and the spectroscopic characterization of the host star, the planet sizes and orbital periods are $1.55_{-0.17}^{+0.20},R_oplus$ and $6.34365pm 0.00028$ days for the inner planet; $1.95_{-0.22}^{+0.27},R_oplus$ and $13.85402pm 0.00088$ days for the middle planet; and $1.64_{-0.17}^{+0.18},R_oplus$ and $40.6835pm 0.0031$ days for the outer planet. The outer planet (K2-155d) is near the habitable zone, with an insolation $1.67pm 0.38$ times that of the Earth. The planets radius falls within the range between that of smaller rocky planets and larger gas-rich planets. To assess the habitability of this planet, we present a series of 3D global climate simulations assuming that K2-155d is tidally locked and has an Earth-like composition and atmosphere. We find that the planet can maintain a moderate surface temperature if the insolation proves to be smaller than $sim 1.5$ times that of the Earth. Doppler mass measurements, transit spectroscopy, and other follow-up observations should be rewarding, since K2-155 is one of the optically brightest M dwarfs known to harbor transiting planets.
We report on the discovery and characterization of the transiting planet K2-39b (EPIC 206247743b). With an orbital period of 4.6 days, it is the shortest-period planet orbiting a subgiant star known to date. Such planets are rare, with only a handful of known cases. The reason for this is poorly understood, but may reflect differences in planet occurrence around the relatively high-mass stars that have been surveyed, or may be the result of tidal destruction of such planets. K2-39 is an evolved star with a spectroscopically derived stellar radius and mass of $3.88^{+0.48}_{-0.42}~mathrm{R_odot}$ and $1.53^{+0.13}_{-0.12}~mathrm{M_odot}$, respectively, and a very close-in transiting planet, with $a/R_star = 3.4$. Radial velocity (RV) follow-up using the HARPS, FIES and PFS instruments leads to a planetary mass of $50.3^{+9.7}_{-9.4}~mathrm{M_oplus}$. In combination with a radius measurement of $8.3 pm 1.1~mathrm{R_oplus}$, this results in a mean planetary density of $0.50^{+0.29}_{-0.17}$ g~cm$^{-3}$. We furthermore discover a long-term RV trend, which may be caused by a long-period planet or stellar companion. Because K2-39b has a short orbital period, its existence makes it seem unlikely that tidal destruction is wholly responsible for the differences in planet populations around subgiant and main-sequence stars. Future monitoring of the transits of this system may enable the detection of period decay and constrain the tidal dissipation rates of subgiant stars.
We report the first planet discovery from the two-wheeled Kepler (K2) mission: HIP 116454 b. The host star HIP 116454 is a bright (V = 10.1, K = 8.0) K1-dwarf with high proper motion, and a parallax-based distance of 55.2 +/- 5.4 pc. Based on high-resolution optical spectroscopy, we find that the host star is metal-poor with [Fe/H] = -.16 +/- .18, and has a radius R = 0.716 +/- .0024 R_sun and mass M = .775 +/- .027 Msun. The star was observed by the Kepler spacecraft during its Two-Wheeled Concept Engineering Test in February 2014. During the 9 days of observations, K2 observed a single transit event. Using a new K2 photometric analysis technique we are able to correct small telescope drifts and recover the observed transit at high confidence, corresponding to a planetary radius of Rp = 2.53 +/- 0.18 Rearth. Radial velocity observations with the HARPS-N spectrograph reveal a 11.82 +/- 1.33 Mearth planet in a 9.1 day orbit, consistent with the transit depth, duration, and ephemeris. Follow-up photometric measurements from the MOST satellite confirm the transit observed in the K2 photometry and provide a refined ephemeris, making HIP 116454 b amenable for future follow-up observations of this latest addition to the growing population of transiting super-Earths around nearby, bright stars.
M-dwarfs have proven to be ideal targets for planetary radial velocity (RV) searches due to their higher planet-star mass contrast. The HADES and CARMENES programs aim to carry out extensive searches of exoplanetary systems around this type of stars in the northern hemisphere, allowing us to address statistically the properties of the planets orbiting these objects. In this work, we perform a spectroscopic and photometric study of one of the program stars (GJ 740), which exhibits a short-period RV signal compatible with a planetary companion. We carried out a spectroscopic analysis based on 129 HARPS-N spectra taken over a time-span of 6 yr combined with 57 HARPS spectra taken over 4 yr, as well as 32 CARMENES spectra taken during more than 1 yr, resulting in a dataset with a time coverage of 10 yr. We also relied on 459 measurements from the public ASAS survey with a time-coverage of 8 yr along with 5 yr of photometric magnitudes from the EXORAP project taken in the $V$, $B$, $R$, and $I$ filters to carry out a photometric study. Both analyses were made using Markov Chain Monte Carlo (MCMC) simulations and Gaussian Process regression to model the activity of the star. We present the discovery of a short-period super-Earth with an orbital period of 2.37756$^{+0.00013}_{-0.00011}$ d and a minimum mass of 2.96$^{+0.50}_{-0.48}$ M$_{oplus}$. We offer an update to the previously reported characterization of the magnetic cycle and rotation period of the star, obtaining values of $P_{rm rot}$=35.563$pm$0.071 d and $P_{rm cycle}$=2800$pm$150 d. Furthermore, the RV time-series exhibits a possibly periodic long-term signal which might be related to a Saturn-mass planet of $sim$ 100 M$_{oplus}$.