Do you want to publish a course? Click here

The K2-ESPRINT Project V: a short-period giant planet orbiting a subgiant star

114   0   0.0 ( 0 )
 Added by Vincent Van Eylen
 Publication date 2016
  fields Physics
and research's language is English




Ask ChatGPT about the research

We report on the discovery and characterization of the transiting planet K2-39b (EPIC 206247743b). With an orbital period of 4.6 days, it is the shortest-period planet orbiting a subgiant star known to date. Such planets are rare, with only a handful of known cases. The reason for this is poorly understood, but may reflect differences in planet occurrence around the relatively high-mass stars that have been surveyed, or may be the result of tidal destruction of such planets. K2-39 is an evolved star with a spectroscopically derived stellar radius and mass of $3.88^{+0.48}_{-0.42}~mathrm{R_odot}$ and $1.53^{+0.13}_{-0.12}~mathrm{M_odot}$, respectively, and a very close-in transiting planet, with $a/R_star = 3.4$. Radial velocity (RV) follow-up using the HARPS, FIES and PFS instruments leads to a planetary mass of $50.3^{+9.7}_{-9.4}~mathrm{M_oplus}$. In combination with a radius measurement of $8.3 pm 1.1~mathrm{R_oplus}$, this results in a mean planetary density of $0.50^{+0.29}_{-0.17}$ g~cm$^{-3}$. We furthermore discover a long-term RV trend, which may be caused by a long-period planet or stellar companion. Because K2-39b has a short orbital period, its existence makes it seem unlikely that tidal destruction is wholly responsible for the differences in planet populations around subgiant and main-sequence stars. Future monitoring of the transits of this system may enable the detection of period decay and constrain the tidal dissipation rates of subgiant stars.



rate research

Read More

Strongly irradiated giant planets are observed to have radii larger than thermal evolution models predict. Although these inflated planets have been known for over fifteen years, it is unclear whether their inflation is caused by deposition of energy from the host star, or inhibited cooling of the planet. These processes can be distinguished if the planet becomes highly irradiated only when the host star evolves onto the red giant branch. We report the discovery of K2-97b, a 1.31 $pm$ 0.11 R$_mathrm{J}$, 1.10 $pm$ 0.11 M$_mathrm{J}$ planet orbiting a 4.20 $pm$ 0.14 R$_odot$, 1.16 $pm$ 0.12 M$_odot$ red giant star with an orbital period of 8.4 days. We precisely constrained stellar and planetary parameters by combining asteroseismology, spectroscopy, and granulation noise modeling along with transit and radial velocity measurements. The uncertainty in planet radius is dominated by systematic differences in transit depth, which we measure to be up to 30% between different lightcurve reduction methods. Our calculations indicate the incident flux on this planet was 170$^{+140}_{-60}$ times the incident flux on Earth while the star was on the main sequence. Previous studies suggest that this incident flux is insufficient to delay planetary cooling enough to explain the present planet radius. This system thus provides the first evidence that planets may be inflated directly by incident stellar radiation rather than by delayed loss of heat from formation. Further studies of planets around red giant branch stars will confirm or contradict this hypothesis, and may reveal a new class of re-inflated planets.
The Neptune desert is a feature seen in the radius-mass-period plane, whereby a notable dearth of short period, Neptune-like planets is found. Here we report the {it TESS} discovery of a new short-period planet in the Neptune desert, orbiting the G-type dwarf TYC,8003-1117-1 (TOI-132). {it TESS} photometry shows transit-like dips at the level of $sim$1400 ppm occurring every $sim$2.11 days. High-precision radial velocity follow-up with HARPS confirmed the planetary nature of the transit signal and provided a semi-amplitude radial velocity variation of $sim$11.5 m s$^{-1}$, which, when combined with the stellar mass of $0.97pm0.06$ $M_{odot}$, provides a planetary mass of 22.83$^{+1.81}_{-1.80}$ $M_{oplus}$. Modeling the {it TESS} high-quality light curve returns a planet radius of 3.43$^{+0.13}_{-0.14}$ $R_{oplus}$, and therefore the planet bulk density is found to be 3.11$^{+0.44}_{-0.450}$ g cm$^{-3}$. Planet structure models suggest that the bulk of the planet mass is in the form of a rocky core, with an atmospheric mass fraction of 4.3$^{+1.2}_{-2.3}$%. TOI-132 b is a {it TESS} Level 1 Science Requirement candidate, and therefore priority follow-up will allow the search for additional planets in the system, whilst helping to constrain low-mass planet formation and evolution models, particularly valuable for better understanding the Neptune desert.
We validate a $R_p=2.32pm 0.24R_oplus$ planet on a close-in orbit ($P=2.260455pm 0.000041$ days) around K2-28 (EPIC 206318379), a metal-rich M4-type dwarf in the Campaign 3 field of the K2 mission. Our follow-up observations included multi-band transit observations from the optical to the near infrared, low-resolution spectroscopy, and high-resolution adaptive-optics (AO) imaging. We perform a global fit to all the observed transits using a Gaussian process-based method and show that the transit depths in all passbands adopted for the ground-based transit follow-ups ($r_2, z_mathrm{s,2}, J, H, K_mathrm{s}$) are within $sim 2sigma$ of the K2 value. Based on a model of the background stellar population and the absence of nearby sources in our AO imaging, we estimate the probability that a background eclipsing binary could cause a false positive to be $< 2times 10^{-5}$. We also show that K2-28 cannot have a physically associated companion of stellar type later than M4, based on the measurement of almost identical transit depths in multiple passbands. There is a low probability for a M4 dwarf companion ($approx 0.072_{-0.04}^{+0.02}$), but even if this were the case, the size of K2-28b falls within the planetary regime. K2-28b has the same radius (within $1sigma$) and experiences a similar irradiation from its host star as the well-studied GJ~1214b. Given the relative brightness of K2-28 in the near infrared ($m_mathrm{Kep}=14.85$ mag and $m_H=11.03$ mag) and relatively deep transit ($0.6-0.7%$), a comparison between the atmospheric properties of these two planets with future observations would be especially interesting.
Statistical analyses from exoplanet surveys around low-mass stars indicate that super-Earth and Neptune-mass planets are more frequent than gas giants around such stars, in agreement with core accretion theory of planet formation. Using precise radial velocities derived from visual and near-infrared spectra, we report the discovery of a giant planet with a minimum mass of 0.46 Jupiter masses in an eccentric 204-day orbit around the very low-mass star GJ 3512. Dynamical models show that the high eccentricity of the orbit is most likely explained from planet-planet interactions. The reported planetary system challenges current formation theories and puts stringent constraints on the accretion and migration rates of planet formation and evolution models, indicating that disc instability may be more efficient in forming planets than previously thought.
We confirm and characterize a close-in ($P_{rm{orb}}$ = 5.425 days), super-Neptune sized ($5.04^{+0.34}_{-0.37}$ Earth radii) planet transiting K2-33 (2MASS J16101473-1919095), a late-type (M3) pre-main sequence (11 Myr-old) star in the Upper Scorpius subgroup of the Scorpius-Centaurus OB association. The host star has the kinematics of a member of the Upper Scorpius OB association, and its spectrum contains lithium absorption, an unambiguous sign of youth (<20 Myr) in late-type dwarfs. We combine photometry from K2 and the ground-based MEarth project to refine the planets properties and constrain the host stars density. We determine ames bolometric flux and effective temperature from moderate resolution spectra. By utilizing isochrones that include the effects of magnetic fields, we derive a precise radius (6-7%) and mass (16%) for the host star, and a stellar age consistent with the established value for Upper Scorpius. Follow-up high-resolution imaging and Doppler spectroscopy confirm that the transiting object is not a stellar companion or a background eclipsing binary blended with the target. The shape of the transit, the constancy of the transit depth and periodicity over 1.5 years, and the independence with wavelength rules out stellar variability, or a dust cloud or debris disk partially occulting the star as the source of the signal; we conclude it must instead be planetary in origin. The existence of K2-33b suggests close-in planets can form in situ or migrate within $sim 10$ Myr, e.g., via interactions with a disk, and that long-timescale dynamical migration such as by Lidov-Kozai or planet-planet scattering is not responsible for all short-period planets.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا