Do you want to publish a course? Click here

Synthesis and structure of tetragonal Bi12.5Nd1.5ReO24.5

101   0   0.0 ( 0 )
 Added by Nata Matskevich
 Publication date 2015
  fields Physics
and research's language is English




Ask ChatGPT about the research

The Bi12.5Nd1.5ReO24.5 tetragonal phase has been synthesized and lattice cell parameters have been determined. According to X-ray data the phase has I4/m sym-metry with lattice parameters a = 0.86742 (12) nm, c =1.7408 (3) nm.



rate research

Read More

In the exploration of new osmium based double perovskites, Sr2FeOsO6 is a new insertion in the existing family. The polycrystalline compound has been prepared by solid state synthesis from the respective binary oxides. PXRD analysis shows the structure is pseudo-cubic at room temperature, whereas low-temperature synchrotron data refinements reveal the structure to be tetragonal, space group I4/m. Heat capacity and magnetic measurements of Sr2FeOsO6 indicated the presence of two magnetic phase transitions at T1 = 140 K and T2 = 67 K. Band structure calculations showed the compound as a narrow energy gap semiconductor, which supports the experimental results obtained from the resistivity measurements. The present study documents significant structural and electronic effects of substituting Fe3+ for Cr3+ ion in Sr2CrOsO6.
Transmission electron microscopy study of tetragonal-like BiFeO3 films reveals a hitherto unreported hierarchical nanodomain structure. The 30-50 nm wide stripe domains with {110} domain walls consist of a substructure of lamellar nanodomains of 8-10 nm width in a herringbone-like arrangement. In situ heating and cooling reveals a reversible transition from the hierarchical nanodomain structure to a tweed-like domain structure which is accompanied by a first-order phase transition near 120 {deg}C with a thermal hysteresis.
Despite the interest in MXenes in the last decade, all of the MXenes reported have a random mixture of surface terminations (-O, -OH, -F). In addition, restacked films have turbostratic disorder and often contain ions, solvent, and other species in between their layers. Here we report Y2CF2, a layered crystal with a unit cell isostructural to a MXene, in which layers are capped only by fluoride anions. We directly synthesize the 3D crystal through a high-temperature solid-state reaction, which affords the 3D crystal in high yield and purity and ensures that only fluoride ions terminate the layers. We characterize the crystal structure and electronic properties using a combination of experimental and computational techniques. We find that relatively strong electrostatic interactions bind the layers together into a 3D crystal and that the lack of orbital overlap between layers gives rise to a description of Y2CF2 as slabs of MXene-like sheets electrically insulated from one another. Therefore, we consider Y2CF2 as a pure 3D crystalline stack of MXene-like sheets. In addition, Y2CF2 is the first transition metal carbide fluoride experimentally synthesized. We hope this work inspires further exploration of transition metal carbide fluorides, which are potentially a large and useful class of compositions.
We have synthesized a new layered oxychalcogenide La2O2Bi3AgS6. From synchrotron X-ray diffraction and Rietveld refinement, the crystal structure of La2O2Bi3AgS6 was refined using a model of the P4/nmm space group with a = 4.0644(1) {AA} and c = 19.412(1) {AA}, which is similar to the related compound LaOBiPbS3, while the interlayer bonds (M2-S1 bonds) are apparently shorter in La2O2Bi3AgS6. The tunneling electron microscopy (TEM) image confirmed the lattice constant derived from Rietveld refinement (c ~ 20 {AA}). The electrical resistivity and Seebeck coefficient suggested that the electronic states of La2O2Bi3AgS6 are more metallic than those of LaOBiS2 and LaOBiPbS3. The insertion of a rock-salt-type chalcogenide into the van der Waals gap of BiS2-based layered compounds, such as LaOBiS2, will be a useful strategy for designing new layered functional materials in the layered chalcogenide family.
81 - Anna Moliterni 2020
Anthracene derivative compounds are currently investigated because of their unique physical properties (e.g., bright luminescence and emission tunability), which make them ideal candidates for advanced optoelectronic devices. Intermolecular interactions are the basis of the tunability of the optical and electronic properties of these compounds, whose prediction and exploitation benefit from the knowledge of the crystal structure and the packing architecture. Polymorphism can occur due to the weak intermolecular interactions, asking for detailed structural analysis clarifying the origin of observed material property modifications. Here, two silylethyne-substituted anthracene compounds are characterized by single-crystal synchrotron X-ray diffraction, identifying a new polymorph. Additionally, laser confocal microscopy and fluorescence lifetime imaging microscopy confirm the results obtained by the X-ray diffraction characterization, i.e., shifting the substituents towards the external benzene rings of the anthracene unit favours {pi}-{pi} interactions, impacting on both the morphology and the microscopic optical properties of the crystals. The compounds with more isolated anthracene units feature shorter lifetime and emission spectra more similar to those ones of isolated molecules. The crystallographic study, supported by the optical investigation, sheds light on the influence of non-covalent interactions on the crystal packing and luminescence properties of anthracene derivatives, providing a further step towards their efficient use as building blocks in active components of light sources and photonic networks.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا