Do you want to publish a course? Click here

Synthesis, Crystal Structure, and Physical Properties of New Layered Oxychalcogenide La2O2Bi3AgS6

85   0   0.0 ( 0 )
 Added by Yoshikazu Mizuguchi
 Publication date 2017
  fields Physics
and research's language is English




Ask ChatGPT about the research

We have synthesized a new layered oxychalcogenide La2O2Bi3AgS6. From synchrotron X-ray diffraction and Rietveld refinement, the crystal structure of La2O2Bi3AgS6 was refined using a model of the P4/nmm space group with a = 4.0644(1) {AA} and c = 19.412(1) {AA}, which is similar to the related compound LaOBiPbS3, while the interlayer bonds (M2-S1 bonds) are apparently shorter in La2O2Bi3AgS6. The tunneling electron microscopy (TEM) image confirmed the lattice constant derived from Rietveld refinement (c ~ 20 {AA}). The electrical resistivity and Seebeck coefficient suggested that the electronic states of La2O2Bi3AgS6 are more metallic than those of LaOBiS2 and LaOBiPbS3. The insertion of a rock-salt-type chalcogenide into the van der Waals gap of BiS2-based layered compounds, such as LaOBiS2, will be a useful strategy for designing new layered functional materials in the layered chalcogenide family.



rate research

Read More

We report the superconductivity in layered oxychalcogenide La2O2Bi3AgS6 compound. The La2O2Bi3AgS6 compound has been reported recently by our group, which has a tetragonal structure with the space group P4/nmm. The crystal structure of La2O2Bi3AgS6 can be regarded as alternate stacks of LaOBiS2-type layer and rock-salt-type (Bi,Ag)S layer. We measured low-temperature electrical resistivity and observed superconductivity at 0.5 K. The observation of superconductivity in the La2O2Bi3AgS6 should provide us with the successful strategy for developing new superconducting phases by the insertion of a rock-salt-type chalcogenide layer into the van der Waals gap of BiS2-based layered compound like LaOBiS2.
In the exploration of new osmium based double perovskites, Sr2FeOsO6 is a new insertion in the existing family. The polycrystalline compound has been prepared by solid state synthesis from the respective binary oxides. PXRD analysis shows the structure is pseudo-cubic at room temperature, whereas low-temperature synchrotron data refinements reveal the structure to be tetragonal, space group I4/m. Heat capacity and magnetic measurements of Sr2FeOsO6 indicated the presence of two magnetic phase transitions at T1 = 140 K and T2 = 67 K. Band structure calculations showed the compound as a narrow energy gap semiconductor, which supports the experimental results obtained from the resistivity measurements. The present study documents significant structural and electronic effects of substituting Fe3+ for Cr3+ ion in Sr2CrOsO6.
We report details of single crystal growth of stoichiometric bismuthide PtBi$_2$ whose structure consists of alternate stacking of Pt layer sandwiched by Bi bilayer along the $c$-axis. The compound crystallizes in space group P-3 with a hexagonal unit cell of $a$=$b$=6.553$AA$, $c$=6.165$AA$. The magnetization data show opposite sign for fields parallel and perpendicular to the Pt layers, respectively. The $T$-dependent resistivity is typical of a metal and the magnetic response shows clear two types of charge carriers and the validity of the semi-classical Kohlers rule. Its physical properties was discussed in comparison with recently proposed topological superconductor $beta$-PdBi$_2$.
We have investigated the crystal structure of LaOBiPbS3 using neutron diffraction and synchrotron X-ray diffraction. From structural refinements, we found that the two metal sites, occupied by Bi and Pb, were differently surrounded by the sulfur atoms. Calculated bond valence sum suggested that one metal site was nearly trivalent and the other was nearly divalent. Neutron diffraction also revealed site selectivity of Bi and Pb in the LaOBiPbS3 structure. These results suggested that the crystal structure of LaOBiPbS3 can be regarded as alternate stacks of the rock-salt-type Pb-rich sulfide layers and the LaOBiS2-type Bi-rich layers. From band calculations for an ideal (LaOBiS2)(PbS) system, we found that the S bands of the PbS layer were hybridized with the Bi bands of the BiS plane at around the Fermi energy, which resulted in the electronic characteristics different from that of LaOBiS2. Stacking the rock-salt type sulfide (chalcogenide) layers and the BiS2-based layered structure could be a new strategy to exploration of new BiS2-based layered compounds, exotic two-dimensional electronic states, or novel functionality.
We report on the crystal structure, magnetic susceptibility, specific heat, electrical and thermoelectrical properties of AmPd5Al2, the americium counterpart of the unconventional superconductor NpPd5Al2. AmPd5Al2 crystallizes in the ZrNi2Al5-type of structure with lattice parameters: a = 4.1298 A and c = 14.7925 A. Magnetic measurements of AmPd5Al2 indicate a paramagnetic behavior with no hint of magnetic ordering nor superconductivity down to 2 K. This aspect is directly related to its 5f6 electronic configuration with J = 0. The specific heat measurements confirm the non magnetic ground state of this compound. The low temperature electronic specific heat gamma_el = 20 mJ mol-1K-2 is clearly enhanced as compared to americium metal. All transport measurements obtained point to a metallic behavior in AmPd5Al2.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا