No Arabic abstract
Despite the interest in MXenes in the last decade, all of the MXenes reported have a random mixture of surface terminations (-O, -OH, -F). In addition, restacked films have turbostratic disorder and often contain ions, solvent, and other species in between their layers. Here we report Y2CF2, a layered crystal with a unit cell isostructural to a MXene, in which layers are capped only by fluoride anions. We directly synthesize the 3D crystal through a high-temperature solid-state reaction, which affords the 3D crystal in high yield and purity and ensures that only fluoride ions terminate the layers. We characterize the crystal structure and electronic properties using a combination of experimental and computational techniques. We find that relatively strong electrostatic interactions bind the layers together into a 3D crystal and that the lack of orbital overlap between layers gives rise to a description of Y2CF2 as slabs of MXene-like sheets electrically insulated from one another. Therefore, we consider Y2CF2 as a pure 3D crystalline stack of MXene-like sheets. In addition, Y2CF2 is the first transition metal carbide fluoride experimentally synthesized. We hope this work inspires further exploration of transition metal carbide fluorides, which are potentially a large and useful class of compositions.
A new class of materials, Topological Crystalline Insulators (TCIs) have been shown to possess exotic surface state properties that are protected by mirror symmetry. These surface features can be enhanced if the surface-area-to-volume ratio of the material increases, or the signal arising from the bulk of the material can be suppressed. We report the experimental procedures to obtain high quality crystal boules of the TCI, SnTe, from which nanowires and microcrystals can be produced by the vapour-liquid-solid (VLS) technique. Detailed characterisation measurements of the bulk crystals as well as of the nanowires and microcrystals produced are presented. The nanomaterials produced were found to be stoichiometrically similar to the source material used. Electron back-scatter diffraction (EBSD) shows that the majority of the nanocrystals grow in the vicinal {001} direction to the growth normal. The growth conditions to produce the different nanostructures of SnTe have been optimised.
Two dimensional multiferroics inherit prominent physical properties from both low dimensional materials and magnetoelectric materials, and can go beyond their three dimensional counterparts for their unique structures. Here, based on density functional theory calculations, a MXene derivative, i.e., i-MXene (Ta$_{2/3}$Fe$_{1/3}$)$_2$CO$_2$, is predicted to be a type-I multiferroic material. Originated from the reliable $5d^0$ rule, its ferroelectricity is robust, with a moderate polarization up to $sim12.33$ $mu$C/cm$^2$ along the a-axis, which can be easily switched and may persist above room temperature. Its magnetic ground state is layered antiferromagnetism. Although it is a type-I multiferroic material, its Neel temperature can be significantly tuned by the paraelectric-ferroelectric transition, manifesting a kind of intrinsic magnetoelectric coupling. Such magnetoelectric effect is originated from the conventional magnetostriction, but unexpectedly magnified by the exchange frustration. Our work not only reveals a nontrivial magnetoelectric mechanism, but also provides a strategy to search for more multiferroics in the two dimensional limit.
We report the magneto-transport properties and the electronic structure of TmSb. TmSb exhibits extremely large transverse magnetoresistance and Shubnikov-de Haas (SdH) oscillation at low temperature and high magnetic field. Interestingly, the split of Fermi surfaces induced by the nonsymmetric spin-orbit interaction has been observed from SdH oscillation. The analysis of the angle-dependent SdH oscillation illustrates the contribution of each Fermi surface to the conductivity. The electronic structure revealed by angle-resolved photoemission spectroscopy (ARPES) and first-principles calculations demonstrates a gap at $X$ point and the absence of band inversion. Combined with the trivial Berry phase extracted from SdH oscillation and the nearly equal concentrations of electron and hole from Hall measurements, it is suggested that TmSb is a topologically trivial semimetal and the observed XMR originates from the electron-hole compensation and high mobility.
We carry out a first-principles density functional study of the interaction between a monatomic Pt wire and a CO molecule, comparing the energy of different adsorption configurations (bridge, on top, substitutional, and tilted bridge) and discussing the effects of spin-orbit (SO) coupling on the electronic structure and on the ballistic conductance of two of these systems (bridge and substitutional). We find that, when the wire is unstrained, the bridge configuration is energetically favored, while the substitutional geometry becomes possible only after the breaking of the Pt-Pt bond next to CO. The interaction can be described by a donation/back-donation process similar to that occurring when CO adsorbs on transition-metal surfaces, a picture which remains valid also in presence of SO coupling. The ballistic conductance of the (tipless) nanowire is not much reduced by the adsorption of the molecule on the bridge and on-top sites, but shows a significant drop in the substitutional case. The differences in the electronic structure due to the SO coupling influence the transmission only at energies far away from the Fermi level so that fully- and scalar-relativistic conductances do not differ significantly.
We review progress in developing epitaxial graphene as a material for carbon electronics. In particular, improvements in epitaxial graphene growth, interface control and the understanding of multilayer epitaxial graphenes electronic properties are discussed. Although graphene grown on both polar faces of SiC is addressed, our discussions will focus on graphene grown on the (000-1) C-face of SiC. The unique properties of C-face multilayer epitaxial graphene have become apparent. These films behave electronically like a stack of nearly independent graphene sheets rather than a thin Bernal-stacked graphite sample. The origin of multilayer graphenes electronic behavior is its unique highly-ordered stacking of non-Bernal rotated graphene planes. While these rotations do not significantly affect the inter-layer interactions, they do break the stacking symmetry of graphite. It is this broken symmetry that causes each sheet to behave like an isolated graphene plane.