No Arabic abstract
The one-dimensional Holstein model and its generalizations have been studied extensively to understand the effects of electron-phonon interaction. The half-filled case is of particular interest, as it describes a transition from a metallic phase with a spin gap due to attractive backscattering to a Peierls insulator with charge-density-wave (CDW) order. Our quantum Monte Carlo results support the existence of a metallic phase with dominant power-law charge correlations, as described by the Luther-Emery fixed point. We demonstrate that for Holstein and also for purely fermionic models the spin gap significantly complicates finite-size numerical studies, and explains inconsistent previous results for Luttinger parameters and phase boundaries. On the other hand, no such complications arise in spinless models. The correct low-energy theory of the spinful Holstein model is argued to be that of singlet bipolarons with a repulsive, mutual interaction. This picture naturally explains the existence of a metallic phase, but also implies that gapless Luttinger liquid theory is not applicable.
Short-range antiferromagnetic correlations are known to open a spin gap in the repulsive Hubbard model on ladders with $M$ legs, when $M$ is even. We show that the spin gap originates from the formation of correlated pairs of electrons with opposite spin, captured by the hidden ordering of a spin-parity operator. Since both spin gap and parity vanish in the two-dimensional limit, we introduce the fractional generalization of spin parity and prove that it remains finite in the thermodynamic limit. Our results are based upon variational wave functions and Monte Carlo calculations: performing a finite size-scaling analysis with growing $M$, we show that the doping region where the parity is finite coincides with the range in which superconductivity is observed in two spatial dimensions. Our observations support the idea that superconductivity emerges out of spin gapped phases on ladders, driven by a spin-pairing mechanism, in which the ordering is conveniently captured by the finiteness of the fractional spin-parity operator.
We study the interplay between the electron-electron (e-e) and the electron-phonon (e-ph) interactions in the two-orbital Hubbard-Holstein model at half filling using the dynamical mean field theory. We find that the e-ph interaction, even at weak couplings, strongly modifies the phase diagram of this model and introduces an orbital-selective Peierls insulating phase (OSPI) that is analogous to the widely studied orbital-selective Mott phase (OSMP). At small e-e and e-ph coupling, we find a competition between the OSMP and the OSPI, while at large couplings, a competition occurs between Mott and charge-density-wave (CDW) insulating phases. We further demonstrate that the Hunds coupling influences the OSPI transition by lowering the energy associated with the CDW. Our results explicitly show that one must be cautious when neglecting the e-ph interaction in multiorbital systems, where multiple electronic interactions create states that are readily influenced by perturbing interactions.
We present determinant quantum Monte Carlo simulations of the hole-doped single-band Hubbard-Holstein model on a square lattice, to investigate how quasiparticles emerge when doping a Mott insulator (MI) or a Peierls insulator (PI). The MI regime at large Hubbard interaction $U$ and small relative electron-phonon coupling strength $lambda$ is quickly suppressed upon doping, by drawing spectral weight from the upper Hubbard band and shifting the lower Hubbard band towards the Fermi level, leading to a metallic state with emergent quasiparticles at the Fermi level. On the other hand, the PI regime at large $lambda$ and small $U$ persists out to relatively high doping levels. We study the evolution of the $d$-wave superconducting susceptibility with doping, and find that it increases with lowering temperature in a regime of intermediate values of $U$ and $lambda$.
Using the variational cluster approach (VCA), we study the transition from the antiferromagnetic to the superconducting phase of the two-dimensional Hubbard model at zero temperature. Our calculations are based on a new method to evaluate the VCA grand potential which employs a modified Lanczos algorithm and avoids integrations over the real or imaginary frequency axis. Thereby, very accurate results are possible for cluster sizes not accessible to full diagonalization. This is important for an improved treatment of short-range correlations, including correlations between Cooper pairs in particular. We investigate the cluster-size dependence of the phase-separation tendency that has been proposed recently on the basis of calculations for smaller clusters. It is shown that the energy barrier driving the phase separation decreases with increasing cluster size. This supports the conjecture that the ground state exhibits microscopic inhomogeneities rather than macroscopic phase separation. The evolution of the single-particle spectum as a function of doping is studied in addtion and the relevance of our results for experimental findings is pointed out.
The Hubbard-Holstein model describes fermions on a discrete lattice, with on-site repulsion between fermions and a coupling to phonons that are localized on sites. Generally, at half-filling, increasing the coupling $g$ to the phonons drives the system towards a Peierls charge density wave state whereas increasing the electron-electron interaction $U$ drives the fermions into a Mott antiferromagnet. At low $g$ and $U$, or when doped, the system is metallic. In one-dimension, using quantum Monte Carlo simulations, we study the case where fermions have a long range coupling to phonons, with characteristic range $xi$, interpolating between the Holstein and Frohlich limits. Without electron-electron interaction, the fermions adopt a Peierls state when the coupling to the phonons is strong enough. This state is destabilized by a small coupling range $xi$, and leads to a collapse of the fermions, and, consequently, phase separation. Increasing interaction $U$ will drive any of these three phases (metallic, Peierls, phase separation) into a Mott insulator phase. The phase separation region is once again present in the $U e 0$ case, even for small values of the coupling range.