Do you want to publish a course? Click here

Competing phases and orbital-selective behaviors in the two-orbital Hubbard-Holstein model

256   0   0.0 ( 0 )
 Added by Shaozhi Li
 Publication date 2017
  fields Physics
and research's language is English




Ask ChatGPT about the research

We study the interplay between the electron-electron (e-e) and the electron-phonon (e-ph) interactions in the two-orbital Hubbard-Holstein model at half filling using the dynamical mean field theory. We find that the e-ph interaction, even at weak couplings, strongly modifies the phase diagram of this model and introduces an orbital-selective Peierls insulating phase (OSPI) that is analogous to the widely studied orbital-selective Mott phase (OSMP). At small e-e and e-ph coupling, we find a competition between the OSMP and the OSPI, while at large couplings, a competition occurs between Mott and charge-density-wave (CDW) insulating phases. We further demonstrate that the Hunds coupling influences the OSPI transition by lowering the energy associated with the CDW. Our results explicitly show that one must be cautious when neglecting the e-ph interaction in multiorbital systems, where multiple electronic interactions create states that are readily influenced by perturbing interactions.



rate research

Read More

In strongly correlated multi-orbital systems, various ordered phases appear. In particular, the orbital order in iron-based superconductors attracts much attention since it is considered to be the origin of the nematic state. In order to clarify the essential condition for realizing orbital orders, we study simple two-orbital ($d_{xz}$, $d_{yz}$) Hubbard model. We find that the orbital order, which corresponds to the nematic order, appears due to the vertex corrections even in the two-orbital model. Thus, $d_{xy}$ orbital is not essential to realize the nematic orbital order. The obtained orbital order depends on the orbital dependence and the topology of fermi surfaces. We also find that another type of orbital order, which is rotated $45^circ$, appears in the heavily hole-doped case.
179 - Takemi Yamada , Jun Ishizuka , 2013
We investigate a two-orbital model for iron-based superconductors to elucidate the effect of interplay between electron correlation and Jahn-Teller electron-phonon coupling by using the dynamical mean-field theory combined with the exact diagonalization method. When the intra- and inter-orbital Coulomb interactions, $U$ and $U$, increase with $U=U$, both the local spin and orbital susceptibilities, $chi_{s}$ and $chi_{o}$, increase with $chi_{s}=chi_{o}$ in the absence of the Hunds rule coupling $J$ and the electron-phonon coupling $g$. In the presence of $J$ and $g$, there are distinct two regimes: for $J stackrel{>}{_sim} 2g^2/omega_0$ with the phonon frequency $omega_0$, $chi_{s}$ is enhanced relative to $chi_{o}$ and shows a divergence at $J=J_c$ above which the system becomes Mott insulator, while for $J stackrel{<}{_sim} 2g^2/omega_0$, $chi_{o}$ is enhanced relative to $chi_{s}$ and shows a divergence at $g=g_c$ above which the system becomes bipolaronic insulator. In the former regime, the superconductivity is mediated by antiferromagnetic fluctuations enhanced due to Fermi-surface nesting and is found to be largely dependent on carrier doping. On the other hand, in the latter regime, the superconductivity is mediated by ferro-orbital fluctuations and is observed for wide doping region including heavily doped case without the Fermi-surface nesting.
We study ordered phases with broken translational symmetry in the half-filled three-orbital Hubbard model with antiferromagnetic Hund coupling by means of dynamical mean-field theory (DMFT) and continuous-time quantum Monte Carlo simulations. The stability regions of the antiferro-orbital (AFO), antiferro-magnetic (AFM), and charge density wave (CDW) states are determined by measuring the corresponding order parameters. We introduce two symmetrically distinct AFO order parameters and show that these are the primary order parameters in the phase diagram. The CDW and AFM states appear simultaneously with these two types of AFO orders in the weak and strong coupling region, respectively. The DMFT phase diagram is consistent with the results obtained by the Hartree approximation and strong-coupling perturbation theory. In the weak coupling regime, a nontrivial exponent $beta=3/2$ is found for the CDW order parameter, which is related to the coupling between the CDW and AFO orders in the Landau theory characteristic for the three-orbital model. We also demonstrate the existence of a metallic AFO state without any charge disproportions and magnetic orders, which appears only at finite temperatures.
We study the interplay between the electron-phonon (e-ph) and on-site electron-electron (e-e) interactions in a three-orbital Hubbard-Holstein model on an extended one-dimensional lattice using determinant quantum Monte Carlo. For weak e-e and e-ph interactions, we observe a competition between an orbital-selective Mott phase (OSMP) and a (multicomponent) charge-density-wave (CDW) insulating phase, with an intermediate metallic phase located between them. For large e-e and e-ph couplings, the OSMP and CDW phases persist, while the metallic phase develops short-range orbital correlations and becomes insulating when both the e-e and e-ph interactions are large but comparable. Many of our conclusions are in line with those drawn from a prior dynamical mean field theory study of the two-orbital Hubbard-Holstein model [Phys. Rev. B 95, 12112(R) (2017)] in infinite dimension, suggesting that the competition between the e-ph and e-e interactions in multiorbital Hubbard-Holstein models leads to rich physics, regardless of the dimension of the system.
103 - Shaozhi. Li , N. Kaushal , Y. Wang 2016
We study non-local correlations in a three-orbital Hubbard model defined on an extended one-dimensional chain using determinant quantum Monte Carlo and density matrix renormalization group methods. We focus on a parameter with robust Hunds coupling, which produces an orbital selective Mott phase (OSMP) at intermediate values of the Hubbard U, as well as an orbitally ordered ferromagnetic insulating state at stronger coupling. An examination of the orbital and spin-correlation functions indicates that the orbital ordering occurs before the onset of magnetic correlations in this parameter regime as a function of temperature. In the OSMP, we find that the self-energy for the itinerant electrons is momentum dependent, indicating a degree of non-local correlations while the localized electrons have largely momentum independent self-energies. These non-local correlations also produce relative shifts of the hole-like and electron-like bands within our model. The overall momentum dependence of these quantities is strongly suppressed in the orbitally-ordered insulating phase.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا