No Arabic abstract
Short-range antiferromagnetic correlations are known to open a spin gap in the repulsive Hubbard model on ladders with $M$ legs, when $M$ is even. We show that the spin gap originates from the formation of correlated pairs of electrons with opposite spin, captured by the hidden ordering of a spin-parity operator. Since both spin gap and parity vanish in the two-dimensional limit, we introduce the fractional generalization of spin parity and prove that it remains finite in the thermodynamic limit. Our results are based upon variational wave functions and Monte Carlo calculations: performing a finite size-scaling analysis with growing $M$, we show that the doping region where the parity is finite coincides with the range in which superconductivity is observed in two spatial dimensions. Our observations support the idea that superconductivity emerges out of spin gapped phases on ladders, driven by a spin-pairing mechanism, in which the ordering is conveniently captured by the finiteness of the fractional spin-parity operator.
We consider the one-band Hubbard model on the square lattice by using variational and Greens function Monte Carlo methods, where the variational states contain Jastrow and backflow correlations on top of an uncorrelated wave function that includes BCS pairing and magnetic order. At half filling, where the ground state is antiferromagnetically ordered for any value of the on-site interaction $U$, we can identify a hidden critical point $U_{rm Mott}$, above which a finite BCS pairing is stabilized in the wave function. The existence of this point is reminiscent of the Mott transition in the paramagnetic sector and determines a separation between a Slater insulator (at small values of $U$), where magnetism induces a potential energy gain, and a Mott insulator (at large values of $U$), where magnetic correlations drive a kinetic energy gain. Most importantly, the existence of $U_{rm Mott}$ has crucial consequences when doping the system: We observe a tendency to phase separation into a hole-rich and a hole-poor region only when doping the Slater insulator, while the system is uniform by doping the Mott insulator. Superconducting correlations are clearly observed above $U_{rm Mott}$, leading to the characteristic dome structure in doping. Furthermore, we show that the energy gain due to the presence of a finite BCS pairing above $U_{rm Mott}$ shifts from the potential to the kinetic sector by increasing the value of the Coulomb repulsion.
By using variational wave functions and quantum Monte Carlo techniques, we investigate the interplay between electron-electron and electron-phonon interactions in the two-dimensional Hubbard-Holstein model. Here, the ground-state phase diagram is triggered by several energy scales, i.e., the electron hopping $t$, the on-site electron-electron interaction $U$, the phonon energy $omega_0$, and the electron-phonon coupling $g$. At half filling, the ground state is an antiferromagnetic insulator for $U gtrsim 2g^2/omega_0$, while it is a charge-density-wave (or bi-polaronic) insulator for $U lesssim 2g^2/omega_0$. In addition to these phases, we find a superconducting phase that intrudes between them. For $omega_0/t=1$, superconductivity emerges when both $U/t$ and $2g^2/tomega_0$ are small; then, by increasing the value of the phonon energy $omega_0$, it extends along the transition line between antiferromagnetic and charge-density-wave insulators. Away from half filling, phase separation occurs when doping the charge-density-wave insulator, while a uniform (superconducting) ground state is found when doping the superconducting phase. In the analysis of finite-size effects, it is extremely important to average over twisted boundary conditions, especially in the weak-coupling limit and in the doped case.
The one-dimensional Holstein model and its generalizations have been studied extensively to understand the effects of electron-phonon interaction. The half-filled case is of particular interest, as it describes a transition from a metallic phase with a spin gap due to attractive backscattering to a Peierls insulator with charge-density-wave (CDW) order. Our quantum Monte Carlo results support the existence of a metallic phase with dominant power-law charge correlations, as described by the Luther-Emery fixed point. We demonstrate that for Holstein and also for purely fermionic models the spin gap significantly complicates finite-size numerical studies, and explains inconsistent previous results for Luttinger parameters and phase boundaries. On the other hand, no such complications arise in spinless models. The correct low-energy theory of the spinful Holstein model is argued to be that of singlet bipolarons with a repulsive, mutual interaction. This picture naturally explains the existence of a metallic phase, but also implies that gapless Luttinger liquid theory is not applicable.
The repulsive one-dimensional Hubbard model with bond-charge interaction (HBC) in the superconducting regime is mapped onto the spin-1/2 XY model with transverse field. We calculate correlations and phase boundaries, realizing an excellent agreement with numerical results. The critical line for the superconducting transition is shown to coincide with the analytical factorization line identifying the commensurate-incommensurate transition in the XY model.
Hubbard ladders are an important stepping stone to the physics of the two-dimensional Hubbard model. While many of their properties are accessible to numerical and analytical techniques, the question of whether weakly hole-doped Hubbard ladders are dominated by superconducting or charge-density-wave correlations has so far eluded a definitive answer. In particular, previous numerical simulations of Hubbard ladders have seen a much faster decay of superconducting correlations than expected based on analytical arguments. We revisit this question using a state-of-the-art implementation of the density matrix renormalization group algorithm that allows us to simulate larger system sizes with higher accuracy than before. Performing careful extrapolations of the results, we obtain improved estimates for the Luttinger liquid parameter and the correlation functions at long distances. Our results confirm that, as suggested by analytical considerations, superconducting correlations become dominant in the limit of very small doping.