Do you want to publish a course? Click here

Joint probability distributions for projection probabilities of random orthonormal states

131   0   0.0 ( 0 )
 Added by Thomas Gorin
 Publication date 2015
  fields Physics
and research's language is English




Ask ChatGPT about the research

A finite dimensional quantum system for which the quantum chaos conjecture applies has eigenstates, which show the same statistical properties than the column vectors of random orthogonal or unitary matrices. Here, we consider the different probabilities for obtaining a specific outcome in a projective measurement, provided the system is in one of its eigenstates. We then give analytic expressions for the joint probability density for these probabilities, with respect to the ensemble of random matrices. In the case of the unitary group, our results can be applied, also, to the phenomenon of universal conductance fluctuations, where the same mathematical quantities describe partial conductances in a two-terminal mesoscopic scattering problem with a finite number of modes in each terminal.



rate research

Read More

We use a noncommutative generalization of Fourier analysis to define a broad class of pseudo-probability representations, which includes the known bosonic and discrete Wigner functions. We characterize the groups of quantum unitary operations which correspond to phase-space transformations, generalizing Gaussian and Clifford operations. As examples, we find Wigner representations for fermions, hard-core bosons, and angle-number systems.
171 - Yu-Chen Cheng , Hong Qian , 2019
The probability distribution of a function of a subsystem conditioned on the value of the function of the whole, in the limit when the ratio of their values goes to zero, has a limit law: It equals the unconditioned marginal probability distribution weighted by an exponential factor whose exponent is uniquely determined by the condition. We apply this theorem to explain the canonical equilibrium ensemble of a system in contact with a heat reservoir. Since the theorem only requires analysis at the level of the function of the subsystem and reservoir, it is applicable even without the knowledge of the composition of the reservoir itself, which extends the applicability of the canonical ensemble. Furthermore, we generalize our theorem to a model with strong interaction that contributes an additional term to the exponent, which is beyond the typical case of approximately additive functions. This result is new in both physics and mathematics, as a theory for the Gibbs conditioning principle for strongly correlated systems. A corollary provides a precise formulation of what a temperature bath is in probabilistic term
We calculate analytically, for finite-size matrices, joint probability densities of ratios of level spacings in ensembles of random matrices characterized by their associated confining potential. We focus on the ratios of two spacings between three consecutive real eigenvalues, as well as certain generalizations such as the overlapping ratios. The resulting formulas are further analyzed in detail in two specific cases: the beta-Hermite and the beta-Laguerre cases, for which we offer explicit calculations for small N. The analytical results are in excellent agreement with numerical simulations of usual random matrix ensembles, and with the level statistics of a quantum many-body lattice model and zeros of the Riemann zeta function.
170 - F. Mezzadri , N. J. Simm 2011
We systematically study the first three terms in the asymptotic expansions of the moments of the transmission eigenvalues and proper delay times as the number of quantum channels n in the leads goes to infinity. The computations are based on the assumption that the Landauer-Butticker scattering matrix for chaotic ballistic cavities can be modelled by the circular ensembles of Random Matrix Theory (RMT). The starting points are the finite-n formulae that we recently discovered (Mezzadri and Simm, J. Math. Phys. 52 (2011), 103511). Our analysis includes all the symmetry classes beta=1,2,4; in addition, it applies to the transmission eigenvalues of Andreev billiards, whose symmetry classes were classified by Zirnbauer (J. Math. Phys. 37 (1996), 4986-5018) and Altland and Zirnbauer (Phys. Rev. B. 55 (1997), 1142-1161). Where applicable, our results are in complete agreement with the semiclassical theory of mesoscopic systems developed by Berkolaiko et al. (J. Phys. A.: Math. Theor. 41 (2008), 365102) and Berkolaiko and Kuipers (J. Phys. A: Math. Theor. 43 (2010), 035101 and New J. Phys. 13 (2011), 063020). Our approach also applies to the Selberg-like integrals. We calculate the first two terms in their asymptotic expansion explicitly.
84 - Miquel Montero 2016
Quantum walks and random walks bear similarities and divergences. One of the most remarkable disparities affects the probability of finding the particle at a given location: typically, almost a flat function in the first case and a bell-shaped one in the second case. Here I show how one can impose any desired stochastic behavior (compatible with the continuity equation for the probability function) on both systems by the appropriate choice of time- and site-dependent coins. This implies, in particular, that one can devise quantum walks that show diffusive spreading without loosing coherence, as well as random walks that exhibit the characteristic fast propagation of a quantum particle driven by a Hadamard coin.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا