Do you want to publish a course? Click here

Moments of the transmission eigenvalues, proper delay times and random matrix theory II

147   0   0.0 ( 0 )
 Added by Francesco Mezzadri
 Publication date 2011
  fields Physics
and research's language is English




Ask ChatGPT about the research

We systematically study the first three terms in the asymptotic expansions of the moments of the transmission eigenvalues and proper delay times as the number of quantum channels n in the leads goes to infinity. The computations are based on the assumption that the Landauer-Butticker scattering matrix for chaotic ballistic cavities can be modelled by the circular ensembles of Random Matrix Theory (RMT). The starting points are the finite-n formulae that we recently discovered (Mezzadri and Simm, J. Math. Phys. 52 (2011), 103511). Our analysis includes all the symmetry classes beta=1,2,4; in addition, it applies to the transmission eigenvalues of Andreev billiards, whose symmetry classes were classified by Zirnbauer (J. Math. Phys. 37 (1996), 4986-5018) and Altland and Zirnbauer (Phys. Rev. B. 55 (1997), 1142-1161). Where applicable, our results are in complete agreement with the semiclassical theory of mesoscopic systems developed by Berkolaiko et al. (J. Phys. A.: Math. Theor. 41 (2008), 365102) and Berkolaiko and Kuipers (J. Phys. A: Math. Theor. 43 (2010), 035101 and New J. Phys. 13 (2011), 063020). Our approach also applies to the Selberg-like integrals. We calculate the first two terms in their asymptotic expansion explicitly.

rate research

Read More

172 - G. Berkolaiko , J. Kuipers 2013
To study electronic transport through chaotic quantum dots, there are two main theoretical approachs. One involves substituting the quantum system with a random scattering matrix and performing appropriate ensemble averaging. The other treats the transport in the semiclassical approximation and studies correlations among sets of classical trajectories. There are established evaluation procedures within the semiclassical evaluation that, for several linear and non-linear transport moments to which they were applied, have always resulted in the agreement with random matrix predictions. We prove that this agreement is universal: any semiclassical evaluation within the accepted procedures is equivalent to the evaluation within random matrix theory. The equivalence is shown by developing a combinatorial interpretation of the trajectory sets as ribbon graphs (maps) with certain properties and exhibiting systematic cancellations among their contributions. Remaining trajectory sets can be identified with primitive (palindromic) factorisations whose number gives the coefficients in the corresponding expansion of the moments of random matrices. The equivalence is proved for systems with and without time reversal symmetry.
We consider wave propagation in a complex structure coupled to a finite number $N$ of scattering channels, such as chaotic cavities or quantum dots with external leads. Temporal aspects of the scattering process are analysed through the concept of time delays, related to the energy (or frequency) derivative of the scattering matrix $mathcal{S}$. We develop a random matrix approach to study the statistical properties of the symmetrised Wigner-Smith time-delay matrix $mathcal{Q}_s=-mathrm{i}hbar,mathcal{S}^{-1/2}big(partial_varepsilonmathcal{S}big),mathcal{S}^{-1/2}$, and obtain the joint distribution of $mathcal{S}$ and $mathcal{Q}_s$ for the system with non-ideal contacts, characterised by a finite transmission probability (per channel) $0<Tleq1$. We derive two representations of the distribution of $mathcal{Q}_s$ in terms of matrix integrals specified by the Dyson symmetry index $beta=1,2,4$ (the general case of unequally coupled channels is also discussed). We apply this to the Wigner time delay $tau_mathrm{W}=(1/N),mathrm{tr}big{mathcal{Q}_sbig}$, which is an important quantity providing the density of states of the open system. Using the obtained results, we determine the distribution $mathscr{P}_{N,beta}(tau)$ of the Wigner time delay in the weak coupling limit $NTll1$ and identify three different asymptotic regimes.
In this paper we study the distribution of level crossings for the spectra of linear families A+lambda B, where A and B are square matrices independently chosen from some given Gaussian ensemble and lambda is a complex-valued parameter. We formulate a number of theoretical and numerical results for the classical Gaussian ensembles and some generalisations. Besides, we present intriguing numerical information about the distribution of monodromy in case of linear families for the classical Gaussian ensembles of 3 * 3 matrices.
240 - Olivier Marchal 2014
The purpose of this article is to study the eigenvalues $u_1^{, t}=e^{ittheta_1},dots,u_N^{,t}=e^{ittheta_N}$ of $U^t$ where $U$ is a large $Ntimes N$ random unitary matrix and $t>0$. In particular we are interested in the typical times $t$ for which all the eigenvalues are simultaneously close to $1$ in different ways thus corresponding to recurrence times in the issue of quantum measurements. Our strategy consists in rewriting the problem as a random matrix integral and use loop equations techniques to compute the first orders of the large $N$ asymptotic. We also connect the problem to the computation of a large Toeplitz determinant whose symbol is the characteristic function of several arc segments of the unit circle. In particular in the case of a single arc segment we recover Widoms formula. Eventually we explain why the first return time is expected to converge towards an exponential distribution when $N$ is large. Numeric simulations are provided along the paper to illustrate the results.
211 - P.G. Grinevich 2021
We study the transmission eigenvalues for the multipoint scatterers of the Bethe-Peierls-Fermi-Zeldovich-Beresin-Faddeev type in dimensions $d=2$ and $d=3$. We show that for these scatterers: 1) each positive energy $E$ is a transmission eigenvalue (in the strong sense) of infinite multiplicity; 2) each complex $E$ is an interior transmission eigenvalue of infinite multiplicity. The case of dimension $d=1$ is also discussed.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا