Do you want to publish a course? Click here

AMS tracking in-orbit performance

55   0   0.0 ( 0 )
 Added by Martin Pohl
 Publication date 2015
  fields Physics
and research's language is English
 Authors Martin Pohl




Ask ChatGPT about the research

AMS-02 is a high precision magnetic spectrometer for cosmic rays in the GeV to TeV energy range. Its tracker consists of nine layers of double-sided silicon microstrip sensors. They are used to locate the trajectories of cosmic rays in the 0.14 T field of a cylindrical magnet, thus measuring their rigidity $p/Z$ and charge sign. In addition, they deliver a high resolution measurement of the absolute charge $|Z|$. The detector has been designed to operate in space with a position resolution of about 10 $mu$m for each hit and charge identification capabilities up to $Z=26$. In this talk I describe the performance in orbit of this detector component and its impact on the overall performance of the spectrometer.



rate research

Read More

The Timepix particle tracking telescope has been developed as part of the LHCb VELO Upgrade project, supported by the Medipix Collaboration and the AIDA framework. It is a primary piece of infrastructure for the VELO Upgrade project and is being used for the development of new sensors and front end technologies for several upcoming LHC trackers and vertexing systems. The telescope is designed around the dual capability of the Timepix ASICs to provide information about either the deposited charge or the timing information from tracks traversing the 14 x 14mm matrix of 55 x 55 um pixels. The rate of reconstructed tracks available is optimised by taking advantage of the shutter driven readout architecture of the Timepix chip, operated with existing readout systems. Results of tests conducted in the SPS North Area beam facility at CERN show that the telescope typically provides reconstructed track rates during the beam spills of between 3.5 and 7.5 kHz, depending on beam conditions. The tracks are time stamped with 1 ns resolution with an efficiency of above 98% and provide a pointing resolution at the centre of the telescope of 1.6 um . By dropping the time stamping requirement the rate can be increased to 15 kHz, at the expense of a small increase in background. The telescope infrastructure provides CO2 cooling and a flexible mechanical interface to the device under test, and has been used for a wide range of measurements during the 2011-2012 data taking campaigns.
CMOS Pixel Sensors tend to become relevant for a growing spectrum of charged particle detection instruments. This comes mainly from their high granularity and low material budget. However, several potential applications require a higher read-out speed and radiation tolerance than those achieved with available devices based on a 0.35 micrometers feature size technology. This paper shows preliminary test results of new prototype sensors manufactured in a 0.18 micrometers process based on a high resistivity epitaxial layer of sizeable thickness. Grounded on these observed performances, we discuss a development strategy over the coming years to reach a full scale sensor matching the specifications of the upgraded version of the Inner Tracking System (ITS) of the ALICE experiment at CERN, for which a sensitive area of up to about 10 square meters may be equipped with pixel sensors.
In order to achieve the challenging requirements on the CLIC vertex detector, a range of technology options have been considered in recent years. One prominent idea is the use of active sensors implemented in a commercial high-voltage CMOS process, capacitively coupled to hybrid pixel readout chips. Recent results have shown the approach to be feasible, though more detailed studies of the performance of such devices, including simulation, are required. The CLICdp collaboration has developed a number of ASICs as part of its vertex detector R&D programme, and here we present results on the performance of a CCPDv3 active sensor glued to a CLICpix readout chip. Charge collection characteristics and tracking performance have been measured over the full expected angular range of incident particles using 120 GeV/c secondary hadron beams from the CERN SPS. Single hit efficiencies have been observed above 99% in the full range of track incidence angles, down to shallow angles. The single hit resolution has also been observed to be stable over this range, with a resolution around 6 $mu$m. The measured charge collection characterstics have been compared to simulations carried out using the Sentaurus TCAD finite-element simulation package combined with circuit simulations and parametrisations of the readout chip response. The simulations have also been successfully used to reproduce electric fields, depletion depths and the current-voltage characteristics of the device, and have been further used to make predictions about future device designs.
The inner drift chamber of the BESIII is encountering serious aging problem after five years running. For the first layer, the decrease in gas gain is about 26% from 2009 to 2013. The upgrade of the inner tracking detector has become an urgent problem for the BESIII experiment. An inner tracker using CMOS pixel sensors is an important candidate because of its great advantages on spatial resolution and radiation hardness. In order to carry out a Monte Carlo study on the expected performance, a Geant4-based full simulation for the silicon pixel detector has been implemented. The tracking method combining the silicon pixel inner tracker and outer drift chamber has been studied and a preliminary reconstruction software was developed. The Monte Carlo study shows that the performances including momentum resolution, vertex resolution and the tracking efficiency are significantly improved due to the good spatial resolution and moderate material budget of the silicon pixel detector.
243 - J. Ljungvall 2020
The performance of the Advanced GAmma Tracking Array (AGATA) at GANIL is discussed, on the basis of the analysis of source and in-beam data taken with up to 30 segmented crystals. Data processing is described in detail. The performance of individual detectors are shown. The efficiency of the individual detectors as well as the efficiency after $gamma$-ray tracking are discussed. Recent developments of $gamma$-ray tracking are also presented. The experimentally achieved peak-to-total is compared with simulations showing the impact of back-scattered $gamma$ rays on the peak-to-total in a $gamma$-ray tracking array. An estimate of the achieved position resolution using the Doppler broadening of in-beam data is also given. Angular correlations from source measurements are shown together with different methods to take into account the effects of $gamma$-ray tracking on the normalization of the angular correlations.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا