Do you want to publish a course? Click here

Threshold Characteristics of Slow-Light Photonic Crystal Lasers

110   0   0.0 ( 0 )
 Added by Weiqi Xue
 Publication date 2015
  fields Physics
and research's language is English




Ask ChatGPT about the research

The threshold properties of photonic crystal quantum dot lasers operating in the slow-light regime are investigated experimentally and theoretically. Measurements show that, in contrast to conventional lasers, the threshold gain attains a minimum value for a specific cavity length. The experimental results are explained by an analytical theory for the laser threshold that takes into account the effects of slow-light and random disorder due to unavoidable fabrication imperfections. Longer lasers are found to operate deeper into the slow-light region, leading to a trade-off between slow-light induced reduction of the mirror loss and slow-light enhancement of disorder-induced losses.



rate research

Read More

The spectral dependence of a bending loss of cascaded 60-degree bends in photonic crystal (PhC) waveguides is explored in a slab-type silicon-on-insulator system. Ultra-low bending loss of (0.05+/-0.03)dB/bend is measured at wavelengths corresponding to the nearly dispersionless transmission regime. In contrast, the PhC bend is found to become completely opaque for wavelengths range corresponding to the slow light regime. A general strategy is presented and experimentally verified to optimize the bend design for improved slow light transmission.
Four-wave mixing is observed in a silicon W1 photonic crystal waveguide. The dispersion dependence of the idler conversion efficiency is measured and shown to be enhanced at wavelengths exhibiting slow group velocities. A 12-dB increase in the conversion efficiency is observed. Concurrently, a decrease in the conversion bandwidth is observed due to the increase in group velocity dispersion in the slow-light regime. The experimentally observed conversion efficiencies agree with the numerically modeled results.
We report the observations of spontaneous Raman scattering in silicon photonic crystal waveguides. Continuous-wave measurements of Stokes emission for both wavelength and power dependence is reported in single line-defect waveguides in hexagonal lattice photonic crystal silicon membranes. By utilizing the Bragg gap edge dispersion of the TM-like mode for pump enhancement and the TE-like fundamental mode-onset for Stokes enhancement, the Stokes emission was observed to increase by up to five times in the region of slow group velocity. The results show explicit nonlinear enhancement in a silicon photonic crystal slow-light waveguide device.
We experimentally demonstrate that the spectral sensitivity of a Mach-Zehnder (MZ) interferometer can be enhanced through structural slow light. We observe a 20 times enhancement by placing a dispersion-engineered-slow-light photonic-crystal waveguide in one arm of a fibre-based MZ interferometer. The spectral sensitivity of the interferometer increases roughly linearly with the group index, and we have quantified the resolution in terms of the spectral density of interference fringes. These results show promise for the use of slow-light methods for developing novel tools for optical metrology and, specifically, for compact high-resolution spectrometers.
We demonstrate temporal group delays in coherently-coupled high-Q multi-cavity photonic crystals, in an all-optical analogue to electromagnetically induced transparency. We report deterministic control of the group delay up to 4x the single cavity lifetime in our CMOS-fabricated room-temperature chip. Supported by three-dimensional numerical simulations and theoretical analyses, our multi-pump beam approach enables control of the multi-cavity resonances and inter-cavity phase, in both single and double transparency peaks. The standing-wave wavelength-scale photon localization allows direct scalability for chip-scale optical pulse trapping and coupled-cavity QED.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا