Do you want to publish a course? Click here

The absolute age of the globular cluster M15 using near-infrared adaptive optics images from PISCES/LBT

80   0   0.0 ( 0 )
 Added by Giuliana Fiorentino
 Publication date 2015
  fields Physics
and research's language is English




Ask ChatGPT about the research

We present deep near-infrared (NIR) J, Ks photometry of the old, metal-poor Galactic globular cluster M,15 obtained with images collected with the LUCI1 and PISCES cameras available at the Large Binocular Telescope (LBT). We show how the use of First Light Adaptive Optics system coupled with the (FLAO) PISCES camera allows us to improve the limiting magnitude by ~2 mag in Ks. By analyzing archival HST data, we demonstrate that the quality of the LBT/PISCES color magnitude diagram is fully comparable with analogous space-based data. The smaller field of view is balanced by the shorter exposure time required to reach a similar photometric limit. We investigated the absolute age of M,15 by means of two methods: i) by determining the age from the position of the main sequence turn-off; and ii) by the magnitude difference between the MSTO and the well-defined knee detected along the faint portion of the MS. We derive consistent values of the absolute age of M15, that is 12.9+-2.6 Gyr and 13.3+-1.1 Gyr, respectively.



rate research

Read More

The new 8.4m LBT adaptive secondary AO system, with its novel pyramid wavefront sensor, was used to produce very high Strehl (75% at 2.16 microns) near infrared narrowband (Br gamma: 2.16 microns and [FeII]: 1.64 microns) images of 47 young (~1 Myr) Orion Trapezium theta1 Ori cluster members. The inner ~41x53 of the cluster was imaged at spatial resolutions of ~0.050 (at 1.64 microns). A combination of high spatial resolution and high S/N yielded relative binary positions to ~0.5 mas accuracies. Including previous speckle data, we analyse a 15 year baseline of high-resolution observations of this cluster. We are now sensitive to relative proper motions of just ~0.3 mas/yr (0.6 km/s at 450 pc) this is a ~7x improvement in orbital velocity accuracy compared to previous efforts. We now detect clear orbital motions in the theta1 Ori B2/B3 system of 4.9+/-0.3 km/s and 7.2+/-0.8 km/s in the theta1 Ori A1/A2 system (with correlations of PA vs. time at >99% confidence). All five members of the theta1 Ori B system appear likely as a gravitationally bound mini-cluster. The very lowest mass member of the theta1 Ori B system (B4; mass ~0.2 Msun) has, for the first time, a clearly detected motion (at 4.3+/-2.0 km/s; correlation=99.7%) w.r.t B1. However, B4 is most likely in an long-term unstable (non-hierarchical) orbit and may soon be ejected from this mini-cluster. This ejection process could play a major role in the formation of low mass stars and brown dwarfs.
Globular Clusters (GCs) in the Milky Way are the primary laboratories for establishing the ages of the oldest stellar populations and for measuring the color-magnitude relation of stars. In infrared (IR) color-magnitude diagrams (CMDs), the stellar main sequence (MS) exhibits a kink, due to opacity effects in M dwarfs, such that lower mass and cooler dwarfs become bluer in the IR color baseline. This diagnostic offers a new opportunity to model GC CMDs and to reduce uncertainties on cluster properties (e.g., their derived ages). In this context, we analyzed Hubble Space Telescope Wide Field Camera 3 IR archival observations of four GCs - 47Tuc, M4, NGC2808, and NGC6752 - for which the data are deep enough to fully sample the low-mass MS, reaching at least ~ 2 mag below the kink. We derived the fiducial lines for each cluster and compared them with a grid of isochrones over a large range of parameter space, allowing age, metallicity, distance, and reddening to vary within reasonable selected ranges. The derived ages for the four clusters are respectively 11.6, 11.5, 11.2, and 12.1 Gyr and their random uncertainties are sigma ~ 0.7 - 1.1 Gyr. Our results suggest that the near-IR MS kink, combined with the MS turn-off, provides a valuable tool to measure GC ages and offers a promising opportunity to push the absolute age of GCs to sub-Gyr accuracy with the next generation IR telescopes such as the James Webb Space Telescope and the Wide-Field Infrared Survey Telescope.
Globular Clusters (GCs) in the Milky Way represent the ideal laboratory to establish the age of the oldest stellar populations and to measure the color-magnitude relation of stars. Infrared (IR) photometry of these objects provides a new opportunity to accomplish this task. In particular, at low stellar masses, the stellar main sequence (MS) in an IR color-magnitude diagram (CMD) exhibits a sharp kink (due to opacity effects in M dwarfs), such that lower mass and cooler dwarfs become bluer in the F110W - F160W color baseline and not redder. This inversion of the color-magnitude relation offers the possibility to fit GC properties using IR imaging, and to reduce their uncertainties. Here, we used the IR channel of the Wide Field Camera 3 onboard the Hubble Space Telescope to obtain new, deep high-resolution photometry of the old metal-poor GC NGC6397. From the analysis of the GC CMD, we revealed below the MS kink the presence of two MSs with different chemical composition. We derived the cluster fiducial line and we compared it with a grid of isochrones over a large range of parameter space, allowing age, metallicity, distance and reddening to vary freely within reasonable selected ranges. We derived an age of 12.6 Gyr with a random uncertainty sigma ~ 0.7 Gyr. These results confirm that the analysis of the IR color-magnitude of stars provide a valuable tool to measure the GC ages and offers a new venue to determine their absolute age to sub-Gyr accuracy with next generation IR telescopes.
We present diffraction-limited ks band and lprime adaptive optics images of the edge-on debris disk around the nearby F2 star HD 15115, obtained with a single 8.4 m primary mirror at the Large Binocular Telescope. At ks band the disk is detected at signal-to-noise per resolution element (SNRE) about 3-8 from about 1-2fasec 5 (45-113 AU) on the western side, and from about 1.2-2fasec 1 (63-90 AU) on the east. At lprime the disk is detected at SNRE about 2.5 from about 1-1fasec 45 (45-90 AU) on both sides, implying more symmetric disk structure at 3.8 microns . At both wavelengths the disk has a bow-like shape and is offset from the star to the north by a few AU. A surface brightness asymmetry exists between the two sides of the disk at ks band, but not at lprime . The surface brightness at ks band declines inside 1asec (about 45 AU), which may be indicative of a gap in the disk near 1asec. The ks - lprime disk color, after removal of the stellar color, is mostly grey for both sides of the disk. This suggests that scattered light is coming from large dust grains, with 3-10 microns -sized grains on the east side and 1-10 microns dust grains on the west. This may suggest that the west side is composed of smaller dust grains than the east side, which would support the interpretation that the disk is being dynamically affected by interactions with the local interstellar medium.
We used ultra-deep $J$ and $K_s$ images secured with the near-infrared GSAOI camera assisted by the multi-conjugate adaptive optics system GeMS at the GEMINI South Telescope in Chile, to obtain a ($K_s$, $J-K_s$) color-magnitude diagram (CMD) for the bulge globular cluster NGC 6624. We obtained the deepest and most accurate near-infrared CMD from the ground for this cluster, by reaching $K_s$ $sim$ 21.5, approximately 8 magnitudes below the horizontal branch level. The entire extension of the Main Sequence (MS) is nicely sampled and at $K_s$ $sim$ 20 we detected the so-called MS knee in a purely near-infrared CMD. By taking advantage of the exquisite quality of the data, we estimated the absolute age of NGC 6624 ($t_{age}$ = 12.0 $pm$ 0.5 Gyr), which turns out to be in good agreement with previous studies in the literature. We also analyzed the luminosity and mass functions of MS stars down to M $sim$ 0.45 M$_{odot}$ finding evidence of a significant increase of low-mass stars at increasing distances from the cluster center. This is a clear signature of mass segregation, confirming that NGC 6624 is in an advanced stage of dynamical evolution.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا