Do you want to publish a course? Click here

High Resolution Images of Orbital Motion in the Orion Trapezium Cluster with the LBT Adaptive Optics System

158   0   0.0 ( 0 )
 Added by Laird M. Close
 Publication date 2012
  fields Physics
and research's language is English




Ask ChatGPT about the research

The new 8.4m LBT adaptive secondary AO system, with its novel pyramid wavefront sensor, was used to produce very high Strehl (75% at 2.16 microns) near infrared narrowband (Br gamma: 2.16 microns and [FeII]: 1.64 microns) images of 47 young (~1 Myr) Orion Trapezium theta1 Ori cluster members. The inner ~41x53 of the cluster was imaged at spatial resolutions of ~0.050 (at 1.64 microns). A combination of high spatial resolution and high S/N yielded relative binary positions to ~0.5 mas accuracies. Including previous speckle data, we analyse a 15 year baseline of high-resolution observations of this cluster. We are now sensitive to relative proper motions of just ~0.3 mas/yr (0.6 km/s at 450 pc) this is a ~7x improvement in orbital velocity accuracy compared to previous efforts. We now detect clear orbital motions in the theta1 Ori B2/B3 system of 4.9+/-0.3 km/s and 7.2+/-0.8 km/s in the theta1 Ori A1/A2 system (with correlations of PA vs. time at >99% confidence). All five members of the theta1 Ori B system appear likely as a gravitationally bound mini-cluster. The very lowest mass member of the theta1 Ori B system (B4; mass ~0.2 Msun) has, for the first time, a clearly detected motion (at 4.3+/-2.0 km/s; correlation=99.7%) w.r.t B1. However, B4 is most likely in an long-term unstable (non-hierarchical) orbit and may soon be ejected from this mini-cluster. This ejection process could play a major role in the formation of low mass stars and brown dwarfs.



rate research

Read More

We utilized the new high-order (250-378 mode) Magellan Adaptive Optics system (MagAO) to obtain very high spatial resolution observations in visible light with MagAOs VisAO CCD camera. In the good-median seeing conditions of Magellan (0.5-0.7) we find MagAO delivers individual short exposure images as good as 19 mas optical resolution. Due to telescope vibrations, long exposure (60s) r (0.63 micron) images are slightly coarser at FWHM=23-29 mas (Strehl ~28%) with bright (R<9 mag) guide stars. These are the highest resolution filled-aperture images published to date. Images of the young (~1 Myr) Orion Trapezium Theta 1 Ori A, B, and C cluster members were obtained with VisAO. In particular, the 32 mas binary Theta 1 Ori C1/C2 was easily resolved in non-interferometric images for the first time. Relative positions of the bright trapezium binary stars were measured with ~0.6-5 mas accuracy. We now are sensitive to relative proper motions of just ~0.2 mas/yr (~0.4 km/s at 414 pc) - this is a ~2-10x improvement in orbital velocity accuracy compared to previous efforts. For the first time, we see clear motion of the barycenter of Theta 1 Ori B2/B3 about Theta 1 Ori B1. All five members of the Theta 1 Ori B system appear likely a gravitationally bound mini-cluster, but we find that not all the orbits can be both circular and co-planar. The lowest mass member of the Theta 1 Ori B system (B4; mass ~0.2 Msun) has a very clearly detected motion (at 4.1+/-1.3 km/s; correlation=99.9%) w.r.t B1 and will likely be ejected in the future. This ejection process of the lowest mass member of a mini-cluster could play a major role in the formation of low mass stars and brown dwarfs.(slightly abridged abstract)
79 - M. Monelli , V. Testa , G. Bono 2015
We present deep near-infrared (NIR) J, Ks photometry of the old, metal-poor Galactic globular cluster M,15 obtained with images collected with the LUCI1 and PISCES cameras available at the Large Binocular Telescope (LBT). We show how the use of First Light Adaptive Optics system coupled with the (FLAO) PISCES camera allows us to improve the limiting magnitude by ~2 mag in Ks. By analyzing archival HST data, we demonstrate that the quality of the LBT/PISCES color magnitude diagram is fully comparable with analogous space-based data. The smaller field of view is balanced by the shorter exposure time required to reach a similar photometric limit. We investigated the absolute age of M,15 by means of two methods: i) by determining the age from the position of the main sequence turn-off; and ii) by the magnitude difference between the MSTO and the well-defined knee detected along the faint portion of the MS. We derive consistent values of the absolute age of M15, that is 12.9+-2.6 Gyr and 13.3+-1.1 Gyr, respectively.
In this paper, we present a study of the Trapezium cluster in Orion. We analyze flux-calibrated VLT/MUSE spectra of 361 stars to simultaneously measure the spectral types, reddening, and the optical veiling due to accretion. We find that the extinction law from Cardelli et al. (1989) with a total-to-selective extinction value of $R_{rm V}=$5.5 is more suitable for this cluster. For 68% of the sample the new spectral types are consistent with literature spectral types within 2 subclasses, but as expected, we derive systematically later types than the literature by one to two subclasses for the sources with significant accretion levels. Here we present an improved Hertzsprung-Russell (H-R) diagram of the Trapezium cluster, in which the contamination by optical veiling on spectral types and stellar luminosities has been properly removed. A comparison of the locations of the stars in the H-R diagram with the non-magnetic and magnetic pre-main sequence evolutionary tracks indicates an age of 1--2~Myr. The magnetic pre-main sequence evolutionary tracks can better explain the luminosities of the low-mass stars. In the H-R diagram, the cluster exhibits a large luminosity spread ($sigma$(Log~$L_{star}/L_{odot})sim$0.3). By collecting a sample of 14 clusters/groups with different ages, we find that the luminosity spread tends to be constant ($sigma$(Log~$L_{star}/L_{odot})sim$0.2--0.25) after 2~Myr, which suggests that age spread is not the main cause of the spread. There are $sim$0.1~dex larger luminosity spreads for the younger clusters, e.g., the Trapezium cluster, than the older clusters, which can be explained by the starspots, accretion history and circumstellar disk orientations.
We compare the observed size distribution of circum stellar disks in the Orion Trapezium cluster with the results of $N$-body simulations in which we incorporated an heuristic prescription for the evolution of these disks. In our simulations, the sizes of stellar disks are affected by close encounters with other stars (with disks). We find that the observed distribution of disk sizes in the Orion Trapezium cluster is excellently reproduced by truncation due to dynamical encounters alone. The observed distribution appears to be a sensitive measure of the past dynamical history of the cluster, and therewith on the conditions of the cluster at birth. The best comparison between the observed disk size distribution and the simulated distribution is realized with a cluster of $N = 2500pm500$ stars with a half-mass radius of about 0.5,pc in virial equilibrium (with a virial ratio of $Q = 0.5$, or somewhat colder $Q simeq 0.3$), and with a density structure according to a fractal dimension of $F simeq 1.6$. Simulations with these parameters reproduce the observed distribution of circum stellar disks in about 0.2--0.5,Myr.
The Chandra High Energy Transmission Gratings (HETG) Orion Legacy Project (HOLP) is the first comprehensive set of observations of a very young massive stellar cluster which provides high resolution X-ray spectra of very young stars over a wide mass range (0.7 - 2.3 Msun). In this paper, we focus on the six brightest X-ray sources with T Tauri stellar counterparts which are well-characterized at optical and infra-red wavelengths. All stars show column densities which are substantially smaller than expected from optical extinction indicating that the sources are located on the near side of the cluster with respect to the observer as well as that these stars are embedded in more dusty environments. Stellar X-ray luminosities are well above $10^{31}$ erg/s, in some cases exceeding $10^{32}$ erg/s for a substantial amount of time. The stars during these observations show no flares but are persistently bright. The spectra can be well fit with two temperature plasma components of 10 MK and 40 MK, of which the latter dominates the flux by a ratio 6:1 on average. The total EMs range between 3 - 8$times10^{54}$ cm$^{-3}$ and are comparable to active coronal sources. Limits on the forbidden to inter-combination line ratios in the He-Like K-shell lines show that we observe a predominantely optically thin plasma with electron densities below $10^{12}$ cm$^{-3}$. Observed abundances compare well with active coronal sources underlying the coronal nature of these sources. The surface flux in this sample of 0.6 to 2.3 Msun classical T Tauri stars shows that coronal activity and possibly coronal loop size increase significantly between ages 0.1 to 10 Myrs.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا