Do you want to publish a course? Click here

Reply to Comment on `Lattice determination of Sigma - Lambda mixing

87   0   0.0 ( 0 )
 Added by Roger Horsley
 Publication date 2015
  fields
and research's language is English




Ask ChatGPT about the research

In this Reply, we respond to the above Comment. Our computation [Phys. Rev. D 91 (2015) 074512] only took into account pure QCD effects, arising from quark mass differences, so it is not surprising that there are discrepancies in isospin splittings and in the Sigma - Lambda mixing angle. We expect that these discrepancies will be smaller in a full calculation incorporating QED effects.



rate research

Read More

Isospin breaking effects in baryon octet (and decuplet) masses are due to a combination of up and down quark mass differences and electromagnetic effects and lead to small mass splittings. Between the Sigma and Lambda this mass splitting is much larger, this being mostly due to their different wavefunctions. However when isospin is broken, there is a mixing between between these states. We describe the formalism necessary to determine the QCD mixing matrix and hence find the mixing angle and mass splitting between the Sigma and Lambda particles due to QCD effects.
Mixing in the $Sigma^0$-$Lambda^0$ system is a direct consequence of broken isospin symmetry and is a measure of both isospin-symmetry breaking as well as general SU(3)-flavour symmetry breaking. In this work we present a new scheme for calculating the extent of $Sigma^0$-$Lambda^0$ mixing using simulations in lattice QCD+QED and perform several extrapolations that compare well with various past determinations. Our scheme allows us to easily contrast the QCD-only mixing case with the full QCD+QED mixing.
SU2 isospin breaking effects in baryon octet (and decuplet) masses are due to a combination of up and down quark mass differences and electromagnetic effects. These mass differences are small. Between the Sigma and Lambda the mass splitting is much larger, but this is mostly due to their different wavefunctions. However there is now also mixing between these states. We determine the QCD mixing matrix and hence find the mixing angle and mass splitting.
The nucleon axial coupling, $g_A$, is a fundamental property of protons and neutrons, dictating the strength with which the weak axial current of the Standard Model couples to nucleons, and hence, the lifetime of a free neutron. The prominence of $g_A$ in nuclear physics has made it a benchmark quantity with which to calibrate lattice QCD calculations of nucleon structure and more complex calculations of electroweak matrix elements in one and few nucleon systems. There were a number of significant challenges in determining $g_A$, notably the notorious exponentially-bad signal-to-noise problem and the requirement for hundreds of thousands of stochastic samples, that rendered this goal more difficult to obtain than originally thought. I will describe the use of an unconventional computation method, coupled with ludicrously fast GPU code, access to publicly available lattice QCD configurations from MILC and access to leadership computing that have allowed these challenges to be overcome resulting in a determination of $g_A$ with 1% precision and all sources of systematic uncertainty controlled. I will discuss the implications of these results for the convergence of $SU(2)$ Chiral Perturbation theory for nucleons, as well as prospects for further improvements to $g_A$ (sub-percent precision, for which we have preliminary results) which is part of a more comprehensive application of lattice QCD to nuclear physics. This is particularly exciting in light of the new CORAL supercomputers coming online, Sierra and Summit, for which our lattice QCD codes achieve a machine-to-machine speed up over Titan of an order of magnitude.
The $Sigma$--$Lambda$ mixing angle is calculated in framework of the QCD sum rules. We find that our prediction for the mixing angle is $(1.00pm 0.15)^0$ which is in good agreement with the quark model prediction, and approximately two times larger than the recent lattice QCD calculations.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا