Do you want to publish a course? Click here

Determination of the $Sigma$--$Lambda$ mixing angle from QCD sum rules

72   0   0.0 ( 0 )
 Added by Mustafa Savci
 Publication date 2015
  fields
and research's language is English




Ask ChatGPT about the research

The $Sigma$--$Lambda$ mixing angle is calculated in framework of the QCD sum rules. We find that our prediction for the mixing angle is $(1.00pm 0.15)^0$ which is in good agreement with the quark model prediction, and approximately two times larger than the recent lattice QCD calculations.



rate research

Read More

70 - Shi-Lin Zhu 1998
We calculate the on-shell $Sigma^0$-$Lambda$ mixing parameter $theta$ with the method of QCD sum rule. Our result is $theta (m^2_{Sigma^0}) =(-)(0.5pm 0.1)$MeV. The electromagnetic interaction is not included.
61 - Shi-Lin Zhu 1998
The method of QCD sum rules in the presence of external elctromagnetic fields is used to calculate the $Omega$ magnetic moment $mu_{Omega^-}$ and $Sigma^0$-$Lambda$ transition magnetic moment $mu_{Sigma^0Lambda}$, with the susceptibilities obtained previously from the study of octet baryon magnetic moments. The results $mu_{Omega^-}=-1.92mu_N$ and $mu_{Sigma^0Lambda}=1.5mu_N$ are in good agreement with the recent experimental data.
We study $bar qq$-hybrid mixing for the light vector mesons and $bar qq$-glueball mixing for the light scalar mesons in Monte-Carlo based QCD Laplace sum rules. By calculating the two-point correlation function of a vector $bar qgamma_mu q$ (scalar $bar q q$) current and a hybrid (glueball) current we are able to estimate the mass and the decay constants of the corresponding mixed physical state that couples to both currents. Our results do not support strong quark/gluonic mixing for either the $1^{--}$ or the $0^{++}$ states.
198 - G. Erkol , M. Oka 2009
We calculate the isoscalar axial-vector coupling constants of the Lambda hyperon using the method of QCD sum rules. A determination of these coupling constants reveals the individual contributions of the u, d and the s quarks to the spin content of Lambda. Our results for the light-quark contributions are in agreement with those from experiment assuming flavor SU(3). We also find that the flavor-SU(3)-breaking effects are small and the contributions from the u and the d quarks to the Lambda polarization are negatively polarized as in the flavor-SU(3) limit.
In the present work, the temperature dependence of the scalar mesons parameters is investigated in the framework of thermal QCD sum rules. We calculate sigma-pole and the non-resonant two-pion continuum contributions to the spectral density. Taking into account additional operators appearing at finite temperature, the thermal QCD sum rules are derived. The temperature dependence of the shifts in the mass and leptonic decay constant of scalar sigma(600) meson is calculated.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا