Do you want to publish a course? Click here

Magnetization induced by odd-frequency spin-triplet Cooper pairs in a Josephson junction with metallic trilayers

285   0   0.0 ( 0 )
 Added by Shin-ichi Hikino
 Publication date 2015
  fields Physics
and research's language is English




Ask ChatGPT about the research

We theoretically study the magnetization inside a normal metal induced in an s-wave superconductor/ferromagnetic metal/normal metal/ferromagnetic metal/s-wave superconductor (S/F1/N/F2/S) Josephson junction. Using quasiclassical Greens function method, we show that the magnetization becomes finite inside N. The origin of this magnetization is due to odd-frequency spin-triplet Cooper pairs formed by electrons of equal and opposite spins, which are induced by proximity effect in the S/F1/N/F2/S junction. We find that the magnetization M(d,q) in N can be decomposed into two parts, M(d,q)=MI(d)+MII(d,q), where q is the superconducting phase difference between two Ss and d is the thickness of N. MI(d) exists generally in S/F junctions, while MII(d,q) carries all q dependence and represents the fingerprint of phase coherence between two Ss in Josephson junctions. The q dependence thus allows us to control the magnetization in N by tuning q for a fixed d. We show that MI(d) weakly decreases with increasing d, while the q dependent magnetization MII(d,q) rapidly decays with d. Moreover, we find that the time-averaged magnetization <MII(d,q)> exhibits discontinuous peak at each resonance DC voltage Vn=nhw_S/2e(n: integer) when DC voltage V as well as AC voltage v_ac(t) with frequency w_S are both applied to the S/F1/N/F2/S junction. This is because MII(d,q) oscillates generally in time t (AC magnetization) with dq/dt=2e[V+v_ac(t)]/h and thus <MII(d,q)>=0, but can be converted into the time-independent DC magnetization for DC voltage at Vn. We also discuss that the magnetization induced in N can be measurably large in realistic systems. Therefore, the measurement of the induced magnetization serves as an alternative way to detect the phase coherence between two Ss in Josephson junctions. Our results also provide a basic concept for tunable magnetization in superconducting spintronics devices.



rate research

Read More

108 - Shin-ichi Hikino 2018
We theoretically investigate the magnetization inside a normal metal containing the Rashba spin-orbit interaction (RSOI) induced by the proximity effect in an s-wave superconductor/normal metal/ferromagnetic metal/s-wave superconductor (S/N/F/S) Josephson junction. By solving the linearized Usadel equation taking account of the RSOI,we find that the direction of the magnetization induced by the proximity effect in N can be reversed by tuning the RSOI.Moreover, we also find that the direction of the magnetization inside N can be reversed by changing the superconducting phase difference, i.e., Josephson phase. From these results, it is expected that the dependence of the magnetization on the RSOI and Josephson phase can be applied to superconducting spintronics.
265 - M. Houzet 2008
The Josephson current in a diffusive superconductor/ferromagnet/superconductor junction with precessing magnetization is calculated within the quasiclassical theory of superconductivity. When the junction is phase-biased, a stationary current (without a.c. component) can flow through it despite the non-equilibrium condition. A large critical current is predicted due to a dynamically induced long range triplet proximity effect. Such effect could be observed in a conventional hybrid device close to the ferromagnetic resonance.
141 - Audrey Cottet 2011
This work discusses theoretically the interplay between the superconducting and ferromagnetic proximity effects, in a diffusive normal metal strip in contact with a superconductor and a non-uniformly magnetized ferromagnetic insulator. The quasiparticle density of states of the normal metal shows clear qualitative signatures of triplet correlations with spin one (TCS1). When one goes away from the superconduting contact, TCS1 focus at zero energy under the form of a peak surrounded by dips, which show a typical spatial scaling behavior. This behavior can coexist with a focusing of singlet correlations and triplet correlations with spin zero at finite but subgap energies. The simultaneous observation of both effects would enable an unambigous characterization of TCS1.
Interfacing superconductors with strongly spin-polarized magnetic materials opens the possibility to discover new spintronic devices in which spin-triplet Cooper pairs play a key role. Motivated by the recent derivation of spin-polarized quasiclassical boundary conditions capable of describing such a scenario in the diffusive limit, we consider the emergent physics in hybrid structures comprised of a conventional s-wave superconductor (e.g. Nb, Al) and either strongly spin-polarized ferromagnetic insulators (e.g. EuO, GdN) or halfmetallic ferromagnets (e.g. CrO2, LCMO). In contrast to most previous works, we focus on how the superconductor itself is influenced by the proximity effect, and how the generated triplet Cooper pairs manifest themselves in the self-consistently computed density of states (DOS) and the superconducting critical temperature Tc. We provide a comprehensive treatment of how the superconductor and its properties are affected by the triplet pairs, demonstrating that our theory can reproduce the recent observation of an unusually large zero-energy peak in a superconductor interfaced with a half-metal, which even exceeds the normal-state DOS. We also discuss the recent observation of a large superconducting spin-valve effect with a Tc change ~1K in superconductor/half-metal structures, in which case our results indicate that the experiment cannot be explained fully by a long-ranged triplet proximity effect.
114 - Shin-ichi Hikino 2017
We theoretically study the magnetism induced by the proximity effect in the normal metal of ferromagnetic Josephson junction composed of two $s$-wave superconductors separated by ferromagnetic metal/normal metal/ferromagnetic metal junction (${S}/{F}/{N}/{F}/{S}$ junction). We calculate the magnetization in the $N$ by solving the Eilenberger equation. We show that the magnetization arises in the ${N}$ when the product of anomalous Greens functions of the spin-triplet even-frequency odd-parity Cooper pair and spin-singlet odd-frequency odd-parity Cooper pair in the ${N}$ has a finite value. The induced magnetization $M(d,theta)$ can be decomposed into two parts, $M(d,theta)=M^{rm I}(d)+M^{rm II}(d,theta)$, where $d$ is the thickness of $N$ and $theta$ is superconducting phase difference between two ${S}$s. Therefore, $theta$ dependence of $M(d,theta)$ allows us to control the amplitude of magnetization by changing $theta$. The variation of $M(d,theta)$ with $theta$ is indeed the good evidence of the magnetization induced by the proximity effect, since some methods of magnetization measurement pick up total magnetization in the ${S}/{F}/{N}/{F}/{S}$ junction.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا