Do you want to publish a course? Click here

Ferromagnetic Josephson junction with precessing magnetization

258   0   0.0 ( 0 )
 Added by M. Houzet
 Publication date 2008
  fields Physics
and research's language is English
 Authors M. Houzet




Ask ChatGPT about the research

The Josephson current in a diffusive superconductor/ferromagnet/superconductor junction with precessing magnetization is calculated within the quasiclassical theory of superconductivity. When the junction is phase-biased, a stationary current (without a.c. component) can flow through it despite the non-equilibrium condition. A large critical current is predicted due to a dynamically induced long range triplet proximity effect. Such effect could be observed in a conventional hybrid device close to the ferromagnetic resonance.



rate research

Read More

108 - Shin-ichi Hikino 2018
We theoretically investigate the magnetization inside a normal metal containing the Rashba spin-orbit interaction (RSOI) induced by the proximity effect in an s-wave superconductor/normal metal/ferromagnetic metal/s-wave superconductor (S/N/F/S) Josephson junction. By solving the linearized Usadel equation taking account of the RSOI,we find that the direction of the magnetization induced by the proximity effect in N can be reversed by tuning the RSOI.Moreover, we also find that the direction of the magnetization inside N can be reversed by changing the superconducting phase difference, i.e., Josephson phase. From these results, it is expected that the dependence of the magnetization on the RSOI and Josephson phase can be applied to superconducting spintronics.
We theoretically propose a principle for precise measurement of oscillatory domain wall (DW) by a ferromagnetic Josephson junction, which is composed of a ferromagnetic wire with DW and two superconducting electrodes. The current-voltage curve exhibits stepwise structures, only when DW oscillates in the ferromagnetic wire. The voltage step appears at V = n(hbar/2e)omega_DW with the fundamental constant hbar/e, integer number n, and the DW frequency omega_DW. Since V can be determined in the order of 10^9 accuracy, the oscillatory DW will be measured more precisely than present status by conventional method.
261 - S. Hikino , S. Yunoki 2015
We theoretically study the magnetization inside a normal metal induced in an s-wave superconductor/ferromagnetic metal/normal metal/ferromagnetic metal/s-wave superconductor (S/F1/N/F2/S) Josephson junction. Using quasiclassical Greens function method, we show that the magnetization becomes finite inside N. The origin of this magnetization is due to odd-frequency spin-triplet Cooper pairs formed by electrons of equal and opposite spins, which are induced by proximity effect in the S/F1/N/F2/S junction. We find that the magnetization M(d,q) in N can be decomposed into two parts, M(d,q)=MI(d)+MII(d,q), where q is the superconducting phase difference between two Ss and d is the thickness of N. MI(d) exists generally in S/F junctions, while MII(d,q) carries all q dependence and represents the fingerprint of phase coherence between two Ss in Josephson junctions. The q dependence thus allows us to control the magnetization in N by tuning q for a fixed d. We show that MI(d) weakly decreases with increasing d, while the q dependent magnetization MII(d,q) rapidly decays with d. Moreover, we find that the time-averaged magnetization <MII(d,q)> exhibits discontinuous peak at each resonance DC voltage Vn=nhw_S/2e(n: integer) when DC voltage V as well as AC voltage v_ac(t) with frequency w_S are both applied to the S/F1/N/F2/S junction. This is because MII(d,q) oscillates generally in time t (AC magnetization) with dq/dt=2e[V+v_ac(t)]/h and thus <MII(d,q)>=0, but can be converted into the time-independent DC magnetization for DC voltage at Vn. We also discuss that the magnetization induced in N can be measurably large in realistic systems. Therefore, the measurement of the induced magnetization serves as an alternative way to detect the phase coherence between two Ss in Josephson junctions. Our results also provide a basic concept for tunable magnetization in superconducting spintronics devices.
114 - Shin-ichi Hikino 2017
We theoretically study the magnetism induced by the proximity effect in the normal metal of ferromagnetic Josephson junction composed of two $s$-wave superconductors separated by ferromagnetic metal/normal metal/ferromagnetic metal junction (${S}/{F}/{N}/{F}/{S}$ junction). We calculate the magnetization in the $N$ by solving the Eilenberger equation. We show that the magnetization arises in the ${N}$ when the product of anomalous Greens functions of the spin-triplet even-frequency odd-parity Cooper pair and spin-singlet odd-frequency odd-parity Cooper pair in the ${N}$ has a finite value. The induced magnetization $M(d,theta)$ can be decomposed into two parts, $M(d,theta)=M^{rm I}(d)+M^{rm II}(d,theta)$, where $d$ is the thickness of $N$ and $theta$ is superconducting phase difference between two ${S}$s. Therefore, $theta$ dependence of $M(d,theta)$ allows us to control the amplitude of magnetization by changing $theta$. The variation of $M(d,theta)$ with $theta$ is indeed the good evidence of the magnetization induced by the proximity effect, since some methods of magnetization measurement pick up total magnetization in the ${S}/{F}/{N}/{F}/{S}$ junction.
We calculate the current phase relation of a planar Josephson junction with a ferromagnetic weak link located on top of a thin normal metal film. Following experimental observations we assume transparent superconductor-ferromagnet interfaces. This provides the best interlayer coupling and a low suppression of the superconducting correlations penetrating from the superconducting electrodes into the ferromagnetic layer. We show that this Josephson junction is a promising candidate for an experimental {phi} junction realization.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا