Do you want to publish a course? Click here

Inducing odd-frequency triplet superconducting correlations in a normal metal

143   0   0.0 ( 0 )
 Added by Audrey Cottet
 Publication date 2011
  fields Physics
and research's language is English
 Authors Audrey Cottet




Ask ChatGPT about the research

This work discusses theoretically the interplay between the superconducting and ferromagnetic proximity effects, in a diffusive normal metal strip in contact with a superconductor and a non-uniformly magnetized ferromagnetic insulator. The quasiparticle density of states of the normal metal shows clear qualitative signatures of triplet correlations with spin one (TCS1). When one goes away from the superconduting contact, TCS1 focus at zero energy under the form of a peak surrounded by dips, which show a typical spatial scaling behavior. This behavior can coexist with a focusing of singlet correlations and triplet correlations with spin zero at finite but subgap energies. The simultaneous observation of both effects would enable an unambigous characterization of TCS1.



rate research

Read More

A topological superconductor nanowire bears a Majorana bound state at each of its ends, leading to unique transport properties. As a way to probe these, we study the finite frequency noise of a biased junction between a normal metal and a topological superconductor nanowire. We use the non-equilibrium Keldysh formalism to compute the finite frequency emission and absorption noise to all order in the tunneling amplitude, for bias voltages below and above the superconducting gap. We observe noticeable structures in the absorption and emission noise, which we can relate to simple transport processes. The presence of the Majorana bound state is directly related to a characteristic behavior of the noise spectrum at low frequency. We further compute the noise measurable with a realistic setup, based on the inductive coupling to a resonant LC circuit, and discuss the impact of the detector temperature. We have also computed the emission noise for a non-topological system with a resonant level, exhibiting a zero-energy Andreev bound state, in order to show the specificities of the topological case. Our results offer an original tool for the further characterization of the presence of Majorana bound states in condensed matter systems.
285 - S. Hikino , S. Yunoki 2015
We theoretically study the magnetization inside a normal metal induced in an s-wave superconductor/ferromagnetic metal/normal metal/ferromagnetic metal/s-wave superconductor (S/F1/N/F2/S) Josephson junction. Using quasiclassical Greens function method, we show that the magnetization becomes finite inside N. The origin of this magnetization is due to odd-frequency spin-triplet Cooper pairs formed by electrons of equal and opposite spins, which are induced by proximity effect in the S/F1/N/F2/S junction. We find that the magnetization M(d,q) in N can be decomposed into two parts, M(d,q)=MI(d)+MII(d,q), where q is the superconducting phase difference between two Ss and d is the thickness of N. MI(d) exists generally in S/F junctions, while MII(d,q) carries all q dependence and represents the fingerprint of phase coherence between two Ss in Josephson junctions. The q dependence thus allows us to control the magnetization in N by tuning q for a fixed d. We show that MI(d) weakly decreases with increasing d, while the q dependent magnetization MII(d,q) rapidly decays with d. Moreover, we find that the time-averaged magnetization <MII(d,q)> exhibits discontinuous peak at each resonance DC voltage Vn=nhw_S/2e(n: integer) when DC voltage V as well as AC voltage v_ac(t) with frequency w_S are both applied to the S/F1/N/F2/S junction. This is because MII(d,q) oscillates generally in time t (AC magnetization) with dq/dt=2e[V+v_ac(t)]/h and thus <MII(d,q)>=0, but can be converted into the time-independent DC magnetization for DC voltage at Vn. We also discuss that the magnetization induced in N can be measurably large in realistic systems. Therefore, the measurement of the induced magnetization serves as an alternative way to detect the phase coherence between two Ss in Josephson junctions. Our results also provide a basic concept for tunable magnetization in superconducting spintronics devices.
We show that mixed-parity superconductors may exhibit equal-spin pair correlations that are odd-in-time and can be tuned by means of an applied field. The direction and the amplitude of the pair correlator in the spin space turn out to be strongly dependent on the symmetry of the order parameter, and thus provide a tool to identify different types of singlet-triplet mixed configurations. We find that odd-in-time spin-polarized pair correlations can be generated without magnetic inhomogeneities in superconducting/ferromagnetic hybrids when parity mixing is induced at the interface.
Hybrid normal metal - insulator - superconductor microstructures suitable for studying an interference of electrons were fabricated. The structures consist of a superconducting loop connected to a normal metal electrode through a tunnel barrier . An optical interferometer with a beam splitter can be considered as a classical analogue for this system. All measurements were performed at temperatures well below 1 K. The interference can be observed as periodic oscillations of the tunnel current (voltage) through the junction at fixed bias voltage (current) as a function of a perpendicular magnetic field. The magnitude of the oscillations depends on the bias point. It reaches a maximum at energy $eV$ which is close to the superconducting gap and decreases with an increase of temperature. Surprisingly, the period of the oscillations in units of magnetic flux $Delta Phi$ is equal neither to $h/e$ nor to $h/2e$, but significantly exceeds these values for larger loop circumferences. The origin of the phenomena is not clear.
89 - Canon Sun , Shu-Ping Lee , 2019
A monopole harmonic superconductor is a novel topological phase of matter with topologically protected gap nodes that result from the non-trivial Berry phase structure of Cooper pairs. In this work we propose to realize a monopole superconductor by the proximity effect between a time-reversal broken Weyl semi-metal and an $s$-wave superconductor. Furthermore, we study the zero-energy vortex bound states in this system by projection methods and by exact solutions. The zero modes exhibit a non-trivial phase winding in real space as a result of the non-trivial winding of the order parameter in momentum space. By mapping the Hamiltonian to the $(1+1)$d Dirac Hamiltonian, it is shown that the zero modes, analogous to the Jackiw-Rebbi mode, are protected by the index theorem. Finally, we propose possible experimental realizations.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا