Do you want to publish a course? Click here

An analysis of the evolving comoving number density of galaxies in hydrodynamical simulations

305   0   0.0 ( 0 )
 Added by Paul Torrey
 Publication date 2015
  fields Physics
and research's language is English




Ask ChatGPT about the research

The cumulative comoving number-density of galaxies as a function of stellar mass or central velocity dispersion is commonly used to link galaxy populations across different epochs. By assuming that galaxies preserve their number-density in time, one can infer the evolution of their properties, such as masses, sizes, and morphologies. However, this assumption does not hold in the presence of galaxy mergers or when rank ordering is broken owing to variable stellar growth rates. We present an analysis of the evolving comoving number density of galaxy populations found in the Illustris cosmological hydrodynamical simulation focused on the redshift range $0leq z leq 3$. Our primary results are as follows: 1) The inferred average stellar mass evolution obtained via a constant comoving number density assumption is systematically biased compared to the merger tree results at the factor of $sim$2(4) level when tracking galaxies from redshift $z=0$ out to redshift $z=2(3)$; 2) The median number density evolution for galaxy populations tracked forward in time is shallower than for galaxy populations tracked backward in time; 3) A similar evolution in the median number density of tracked galaxy populations is found regardless of whether number density is assigned via stellar mass, stellar velocity dispersion, or dark matter halo mass; 4) Explicit tracking reveals a large diversity in galaxies assembly histories that cannot be captured by constant number-density analyses; 5) The significant scatter in galaxy linking methods is only marginally reduced by considering a number of additional physical and observable galaxy properties as realized in our simulation. We provide fits for the forward and backward median evolution in stellar mass and number density and discuss implications of our analysis for interpreting multi-epoch galaxy property observations.



rate research

Read More

Galaxy comoving number density is commonly used to forge progenitor/descendant links between observed galaxy populations at different epochs. However, this method breaks down in the presence of galaxy mergers, or when galaxies experience stochastic growth rates. We present a simple analytic framework to treat the physical processes that drive the evolution and diffusion of galaxies within comoving number density space. The evolution in mass rank order of a galaxy population with time is influenced by the galaxy coagulation rate and galaxy mass rank scatter rate. We quantify the relative contribution of these two effects to the mass rank order evolution. We show that galaxy coagulation is dominant at lower redshifts and stellar masses, while scattered growth rates dominate the mass rank evolution at higher redshifts and stellar masses. For a galaxy population at $10^{10} M_odot$, coagulation has been the dominant effect since $z=2.2$, but a galaxy population at $10^{11} M_odot$ was dominated by mass rank scatter until $z=0.6$. We show that although the forward and backward median number density evolution tracks are asymmetric, the backward median number density evolution can be obtained by convolving the descendant distribution function with progenitor relative abundances. We tabulate fits for the median number density evolution and scatter which can be applied to improve the way galaxy populations are linked in multi-epoch observational datasets.
170 - Zhi Li , Juntai Shen 2015
Dust lanes, nuclear rings, and nuclear spirals are typical gas structures in the inner region of barred galaxies. Their shapes and properties are linked to the physical parameters of the host galaxy. We use high-resolution hydrodynamical simulations to study 2D gas flows in simple barred galaxy models. The nuclear rings formed in our simulations can be divided into two groups: one group is nearly round and the other is highly elongated. We find that roundish rings may not form when the bar pattern speed is too high or the bulge central density is too low. We also study the periodic orbits in our galaxy models, and find that the concept of inner Lindblad resonance (ILR) may be generalized by the extent of $x_2$ orbits. All roundish nuclear rings in our simulations settle in the range of $x_2$ orbits (or ILRs). However, knowing the resonances is insufficient to pin down the exact location of these nuclear rings. We suggest that the backbone of round nuclear rings is the $x_2$ orbital family, i.e. round nuclear rings are allowed only in the radial range of $x_2$ orbits. A round nuclear ring forms exactly at the radius where the residual angular momentum of infalling gas balances the centrifugal force, which can be described by a parameter $f_{rm ring}$ measured from the rotation curve. The gravitational torque on gas in high pattern speed models is larger, leading to a smaller ring size than in the low pattern speed models. Our result may have important implications for using nuclear rings to measure the parameters of real barred galaxies with 2D gas kinematics.
Low mass galaxies are expected to be dark matter dominated even within their centrals. Recently two observations reported two dwarf galaxies in group environment with very little dark matter in their centrals. We explore the population and origins of dark-matter-deficient galaxies (DMDGs) in two state-of-the-art hydrodynamical simulations, the EAGLE and Illustris projects. For all satellite galaxies with $10^9<M_*<10^{10}$ M$_{odot}$ in groups with $M_{200}>10^{13}$ M$_{odot}$, we find that about $2.6%$ of them in the EAGLE, and $1.5%$ in the Illustris are DMDGs with dark matter fractions below $50%$ inside two times half-stellar-mass radii. We demonstrate that DMDGs are highly tidal disrupted galaxies; and because dark matter has higher binding energy than stars, mass loss of the dark matter is much more rapid than stars in DMDGs during tidal interactions. If DMDGs were confirmed in observations, they are expected in current galaxy formation models.
We test cosmological hydrodynamical simulations of galaxy formation regarding the properties of the Blue Cloud (BC), Green Valley (GV) and Red Sequence (RS), as measured on the 4000$small{ mathring {mathrm A}}$ break strength vs stellar mass plane at $z=0.1$. We analyse the RefL0100N1504 run of EAGLE and the TNG100 run of IllustrisTNG project, by comparing them with the Sloan Digital Sky Survey, while taking into account selection bias. Our analysis focuses on the GV, within stellar mass $log,mathrm{M_star/M_{odot}} simeq 10-11$, selected from the bimodal distribution of galaxies on the D$_n$(4000) vs stellar mass plane, following Angthopo et al. methodology. Both simulations match the fraction of AGN in the green-valley. However, they over-produce quiescent GV galaxies with respect to observations, with IllustrisTNG yielding a higher fraction of quiescent GV galaxies than EAGLE. In both, GV galaxies have older luminosity-weighted ages with respect to the SDSS, while a better match is found for mass-weighted ages. We find EAGLE GV galaxies quench their star formation early, but undergo later episodes of star formation, matching observations. In contrast, IllustrisTNG GV galaxies have a more extended SFH, and quench more effectively at later cosmic times, producing the excess of quenched galaxies in GV compared with SDSS, based on the 4000$small{ mathring {mathrm A}}$ break strength. These results suggest the AGN feedback subgrid physics, more specifically, the threshold halo mass for black hole input and the black hole seed mass, could be the primary cause of the over-production of quiescent galaxies found with respect to the observational constraints.
Studying the average properties of galaxies at a fixed comoving number density over a wide redshift range has become a popular observational method, because it may trace the evolution of galaxies statistically. We test this method by comparing the evolution of galaxies at fixed number density and by following individual galaxies through cosmic time (z=0-5) in cosmological, hydrodynamical simulations from OWLS. Comparing progenitors, descendants, and galaxies selected at fixed number density at each redshift, we find differences of up to a factor of three for galaxy and interstellar medium (ISM) masses. The difference is somewhat larger for black hole masses. The scatter in ISM mass increases significantly towards low redshift with all selection techniques. We use the fixed number density technique to study the assembly of dark matter, gas, stars, and black holes and the evolution in accretion and star formation rates. We find three different regimes for massive galaxies, consistent with observations: at high redshift the gas accretion rate dominates, at intermediate redshifts the star formation rate is the highest, and at low redshift galaxies grow mostly through mergers. Quiescent galaxies have much lower ISM masses (by definition) and much higher black hole masses, but the stellar and halo masses are fairly similar. Without active galactic nucleus (AGN) feedback, massive galaxies are dominated by star formation down to z=0 and most of their stellar mass growth occurs in the centre. With AGN feedback, stellar mass is only added to the outskirts of galaxies by mergers and they grow inside-out.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا