Do you want to publish a course? Click here

Dark-matter-deficient galaxies in hydrodynamical simulations

264   0   0.0 ( 0 )
 Added by Yingjie Jing
 Publication date 2018
  fields Physics
and research's language is English




Ask ChatGPT about the research

Low mass galaxies are expected to be dark matter dominated even within their centrals. Recently two observations reported two dwarf galaxies in group environment with very little dark matter in their centrals. We explore the population and origins of dark-matter-deficient galaxies (DMDGs) in two state-of-the-art hydrodynamical simulations, the EAGLE and Illustris projects. For all satellite galaxies with $10^9<M_*<10^{10}$ M$_{odot}$ in groups with $M_{200}>10^{13}$ M$_{odot}$, we find that about $2.6%$ of them in the EAGLE, and $1.5%$ in the Illustris are DMDGs with dark matter fractions below $50%$ inside two times half-stellar-mass radii. We demonstrate that DMDGs are highly tidal disrupted galaxies; and because dark matter has higher binding energy than stars, mass loss of the dark matter is much more rapid than stars in DMDGs during tidal interactions. If DMDGs were confirmed in observations, they are expected in current galaxy formation models.



rate research

Read More

We searched for isolated dark matter deprived galaxies within several state-of-the-art hydrodynamical simulations: Illustris, IllustrisTNG, EAGLE, and Horizon-AGN and found a handful of promising objects in all except Horizon-AGN. While our initial goal was to study their properties and evolution, we quickly noticed that all of them were located at the edge of their respective simulation boxes. After carefully investigating these objects using the full particle data, we concluded that they are not merely caused by a problem with the algorithm identifying bound structures. We provide strong evidence that these oddballs were created from regular galaxies that get torn apart due to unphysical processes when crossing the edge of the simulation box. We show that these objects are smoking guns indicating an issue with the implementation of the periodic boundary conditions of the particle data in Illustris, IllustrisTNG, and EAGLE, which was eventually traced down to be a minor bug occurring for a very rare set of conditions.
94 - A. Marasco , L. Posti , K. Oman 2020
We investigate the disc-halo connection in massive (Mstar/Msun>5e10) disc galaxies from the cosmological hydrodynamical simulations EAGLE and IllustrisTNG, and compare it with that inferred from the study of HI rotation curves in nearby massive spirals from the Spitzer Photometry and Accurate Rotation Curves (SPARC) dataset. We find that discrepancies between the the simulated and observed discs arise both on global and on local scales. Globally, the simulated discs inhabit halos that are a factor ~4 (in EAGLE) and ~2 (in IllustrisTNG) more massive than those derived from the rotation curve analysis of the observed dataset. We also use synthetic rotation curves of the simulated discs to demonstrate that the recovery of the halo masses from rotation curves are not systematically biased. We find that the simulations predict dark-matter dominated systems with stellar-to-total enclosed mass ratios that are a factor of 1.5-2 smaller than real galaxies at all radii. This is an alternative manifestation of the `failed feedback problem, since it indicates that simulated halos hosting massive discs have been too inefficient at converting their baryons into stars, possibly due to an overly efficient stellar and/or AGN feedback implementation.
303 - Mark R. Lovell 2016
We study galaxy formation in sterile neutrino dark matter models that differ signifi- cantly from both cold and from `warm thermal relic models. We use the EAGLE code to carry out hydrodynamic simulations of the evolution of pairs of galaxies chosen to resemble the Local Group, as part of the APOSTLE simulations project. We compare cold dark matter (CDM) with two sterile neutrino models with 7 keV mass: one, the warmest among all models of this mass (LA120) and the other, a relatively cold case (LA10). We show that the lower concentration of sterile neutrino subhalos compared to their CDM counterparts makes the inferred inner dark matter content of galaxies like Fornax (or Magellanic Clouds) less of an outlier in the sterile neutrino cosmologies. In terms of the galaxy number counts the LA10 simulations are indistinguishable from CDM when one takes into account halo-to-halo (or `simulation-to-simulation) scatter. In order for the LA120 model to match the number of Local Group dwarf galaxies, a higher fraction of low mass haloes is required to form galaxies than is predicted by the EAGLE simulations. As the census of the Local Group galaxies nears completion, this population may provide a strong discriminant between cold and warm dark matter models.
In the standard Lambda-CDM paradigm, dwarf galaxies are expected to be dark-matter-rich, as baryonic feedback is thought to quickly drive gas out of their shallow potential wells and quench star formation at early epochs. Recent observations of local dwarfs with extremely low dark matter content appear to contradict this picture, potentially bringing the validity of the standard model into question. We use NewHorizon, a high-resolution cosmological simulation, to demonstrate that sustained stripping of dark matter, in tidal interactions between a massive galaxy and a dwarf satellite, naturally produces dwarfs that are dark-matter-deficient, even though their initial dark matter fractions are normal. The process of dark matter stripping is responsible for the large scatter in the halo-to-stellar mass relation in the dwarf regime. The degree of stripping is driven by the closeness of the orbit of the dwarf around its massive companion and, in extreme cases, produces dwarfs with halo-to-stellar mass ratios as low as unity, consistent with the findings of recent observational studies. ~30 per cent of dwarfs show some deviation from normal dark matter fractions due to dark matter stripping, with 10 per cent showing high levels of dark matter deficiency (Mhalo/M*<10). Given their close orbits, a significant fraction of dark-matter-deficient dwarfs merge with their massive companions (e.g. ~70 per cent merge over timescales of ~3.5 Gyrs), with the dark-matter-deficient population being constantly replenished by new interactions between dwarfs and massive companions. The creation of these galaxies is, therefore, a natural by-product of galaxy evolution and their existence is not in tension with the standard paradigm.
80 - Qi Guo , Huijie Hu , Zheng Zheng 2019
In the standard cosmological model, dark matter drives the structure formation and constructs potential wells within which galaxies may form. The baryon fraction in dark halos can reach the universal value (15.7%) in massive clusters and decreases rapidly as the mass of the system decreases. The formation of dwarf galaxies is sensitive both to baryonic processes and the properties of dark matter owing to the shallow potential wells in which they form. In dwarf galaxies in the Local Group, dark matter dominates the mass content even within their optical-light half-radii (r_e ~ 1 kpc). However, recently it has been argued that not all dwarf galaxies are dominated by dark matter. Here we report 19 dwarf galaxies that could consist mainly of baryons up to radii well beyond r_e, at which point they are expected to be dominated by dark matter. Of these, 14 are isolated dwarf galaxies, free from the influence of nearby bright galaxies and high dense environments. This result provides observational evidence that could challenge the formation theory of low-mass galaxies within the framework of standard cosmology. Further observations, in particular deep imaging and spatially-resolved kinematics, are needed to constrain the baryon fraction better in such galaxies.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا