Do you want to publish a course? Click here

Higher dimensional Lemniscates: the geometry of $r$ particles in $n$-space with logarithmic potentials

144   0   0.0 ( 0 )
 Publication date 2015
  fields
and research's language is English




Ask ChatGPT about the research

We prove some basic theorems concerning lemniscate configurations in an Euclidean space of dimension $ n geq 3$. Lemniscates are defined as follows. Given m points $w_j $ in $mathbb R^n$, consider the function $F(x)$ which is the product of the distances $ |x-w_j|$: the singular level sets of the function $F$ are called lemniscates. We show via complex analysis that the critical points of $F$ have Hessian of positivity at least $(n-1)$. This implies that, if $F$ is a Morse function, then $F$ has only local minima and saddle points with negativity 1. The critical points lie in the convex span of the points $|w_j| $ (these are absolute minima): but we made also the discovery that $F$ can also have other local minima, and indeed arbitrarily many. We discuss several explicit examples. We finally prove in the appendix that all critical points are isolated.



rate research

Read More

203 - Fabrizio Catanese 2015
We prove the unirationality of the Ueno-type manifold $X_{4,6}$. $X_{4,6}$ is the minimal resolution of the quotient of the Cartesian product $E(6)^4$, where $E(6)$ is the equianharmonic elliptic curve, by the diagonal action of a cyclic group of order 6 (having a fixed point on each copy of $E(6)$). We collect also other results, and discuss several related open questions.
146 - Steffen Sagave , Timo Schurg , 2013
In order to develop the foundations of logarithmic derived geometry, we introduce a model category of logarithmic simplicial rings and a notion of derived log etale maps and use this to define derived log stacks.
148 - Eckart Viehweg , Kang Zuo 2005
Given an open subset U of a projective curve Y and a smooth family f:V-->U of curves, with semi-stable reduction over Y, we show that for a sub variation of Hodge structures of rank >2 the Arakelov inequality must be strict. For families of n-folds we prove a similar result under the assumption that the (n,0) component of the Higgs bundle defines fibrewise a birational map.
We study foliations by curves on the three-dimensional projective space with no isolated singularities, which is equivalent to assuming that the conormal sheaf is locally free. We provide a classification of such foliations by curves up to degree 3, also describing the possible singular schemes. In particular, we prove that foliations by curves of degree 1 or 2 are either contained on a pencil of planes or legendrian, and are given by the complete intersection of two codimension one distributions. We prove that the conormal sheaf of a foliation by curves of degree 3 with reduced singular scheme either splits as a sum of line bundles or is an instanton bundle. For degree larger than 3, we focus on two classes of foliations by curves, namely legendrian foliations and those whose conormal sheaf is a twisted null correlation bundle. We give characterizations of such foliations, describe their singular schemes and their moduli spaces.
106 - Joel Merker 2019
Once first answers in any dimension to the Green-Griffiths and Kobayashi conjectures for generic algebraic hypersurfaces $mathbb{X}^{n-1} subset mathbb{P}^n(mathbb{C})$ have been reached, the principal goal is to decrease (to improve) the degree bounds, knowing that the `celestial horizon lies near $d geqslant 2n$. For Green-Griffiths algebraic degeneracy of entire holomorphic curves, we obtain: [ d ,geqslant, big(sqrt{n},{sf log},nbig)^n, ] and for Kobayashi-hyperbolicity (constancy of entire curves), we obtain: [ d ,geqslant, big(n,{sf log},nbig)^n. ] The latter improves $d geqslant n^{2n}$ obtained by Merker in arxiv.org/1807/11309/. Admitting a certain technical conjecture $I_0 geqslant widetilde{I}_0$, the method employed (Diverio-Merker-Rousseau, Berczi, Darondeau) conducts to constant power $n$, namely to: [ d ,geqslant, 2^{5n} qquad text{and, respectively, to:} qquad d ,geqslant, 4^{5n}. ] In Spring 2019, a forthcoming prepublication based on intensive computer explorations will present several subconjectures supporting the belief that $I_0 geqslant widetilde{I}_0$, a conjecture which will be established up to dimension $n = 50$.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا