Do you want to publish a course? Click here

On the unirationality of higher dimensional Ueno-type manifolds

192   0   0.0 ( 0 )
 Publication date 2015
  fields
and research's language is English




Ask ChatGPT about the research

We prove the unirationality of the Ueno-type manifold $X_{4,6}$. $X_{4,6}$ is the minimal resolution of the quotient of the Cartesian product $E(6)^4$, where $E(6)$ is the equianharmonic elliptic curve, by the diagonal action of a cyclic group of order 6 (having a fixed point on each copy of $E(6)$). We collect also other results, and discuss several related open questions.



rate research

Read More

148 - Eckart Viehweg , Kang Zuo 2005
Given an open subset U of a projective curve Y and a smooth family f:V-->U of curves, with semi-stable reduction over Y, we show that for a sub variation of Hodge structures of rank >2 the Arakelov inequality must be strict. For families of n-folds we prove a similar result under the assumption that the (n,0) component of the Higgs bundle defines fibrewise a birational map.
We prove some basic theorems concerning lemniscate configurations in an Euclidean space of dimension $ n geq 3$. Lemniscates are defined as follows. Given m points $w_j $ in $mathbb R^n$, consider the function $F(x)$ which is the product of the distances $ |x-w_j|$: the singular level sets of the function $F$ are called lemniscates. We show via complex analysis that the critical points of $F$ have Hessian of positivity at least $(n-1)$. This implies that, if $F$ is a Morse function, then $F$ has only local minima and saddle points with negativity 1. The critical points lie in the convex span of the points $|w_j| $ (these are absolute minima): but we made also the discovery that $F$ can also have other local minima, and indeed arbitrarily many. We discuss several explicit examples. We finally prove in the appendix that all critical points are isolated.
This article investigates the subject of rigid compact complex manifolds. First of all we investigate the different notions of rigidity (local rigidity, global rigidity, infinitesimal rigidity, etale rigidity and strong rigidity) and the relations among them. Only for curves these notions coincide and the only rigid curve is the projective line. For surfaces we prove that a rigid surface which is not minimal of general type is either a Del Pezzo surface of degree >= 5 or an Inoue surface. We give examples of rigid manifolds of dimension n >= 3 and Kodaira dimensions 0, and 2 <=k <= n. Our main theorem is that the Hirzebruch Kummer coverings of exponent n >= 4 branched on a complete quadrangle are infinitesimally rigid. Moreover, we pose a number of questions.
In this paper we study Higgs and co-Higgs $G$-bundles on compact Kahler manifolds $X$. Our main results are: (1) If $X$ is Calabi-Yau, and $(E,,theta)$ is a semistable Higgs or co-Higgs $G$-bundle on $X$, then the principal $G$-bundle $E$ is semistable. In particular, there is a deformation retract of ${mathcal M}_H(G)$ onto $mathcal M(G)$, where $mathcal M(G)$ is the moduli space of semistable principal $G$-bundles with vanishing rational Chern classes on $X$, and analogously, ${mathcal M}_H(G)$ is the moduli space of semistable principal Higgs $G$-bundles with vanishing rational Chern classes. (2) Calabi-Yau manifolds are characterized as those compact Kahler manifolds whose tangent bundle is semistable for every Kahler class, and have the following property: if $(E,,theta)$ is a semistable Higgs or co-Higgs vector bundle, then $E$ is semistable.
An MBM locus on a hyperkahler manifold is the union of all deformations of a minimal rational curve with negative self-intersection. MBM loci can be equivalently defined as centers of bimeromorphic contractions. It was shown that the MBM loci on deformation equivalent hyperkahler manifolds are diffeomorphic. We determine the MBM loci on a hyperkahler manifold of K3-type of low dimension using a deformation to a Hilbert scheme of a non-algebraic K3 surface.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا