No Arabic abstract
We study conditions for existence, uniqueness and invariance of the comprehensive nonlinear valuation equations first introduced in Pallavicini et al (2011). These equations take the form of semilinear PDEs and Forward-Backward Stochastic Differential Equations (FBSDEs). After summarizing the cash flows definitions allowing us to extend valuation to credit risk and default closeout, including collateral margining with possible re-hypothecation, and treasury funding costs, we show how such cash flows, when present-valued in an arbitrage free setting, lead to semi-linear PDEs or more generally to FBSDEs. We provide conditions for existence and uniqueness of such solutions in a viscosity and classical sense, discussing the role of the hedging strategy. We show an invariance theorem stating that even though we start from a risk-neutral valuation approach based on a locally risk-free bank account growing at a risk-free rate, our final valuation equations do not depend on the risk free rate. Indeed, our final semilinear PDE or FBSDEs and their classical or viscosity solutions depend only on contractual, market or treasury rates and we do not need to proxy the risk free rate with a real market rate, since it acts as an instrumental variable. The equations derivations, their numerical solutions, the related XVA valuation adjustments with their overlap, and the invariance result had been analyzed numerically and extended to central clearing and multiple discount curves in a number of previous works, including Pallavicini et al (2011), Pallavicini et al (2012), Brigo et al (2013), Brigo and Pallavicini (2014), and Brigo et al (2014).
We develop a unified valuation theory that incorporates credit risk (defaults), collateralization and funding costs, by expanding the replication approach to a generality that has not yet been studied previously and reaching valuation when replication is not assumed. This unifying theoretical framework clarifies the relationship between the two valuation approaches: the adjusted cash flows approach pioneered for example by Brigo, Pallavicini and co-authors ([12, 13, 34]) and the classic replication approach illustrated for example by Bielecki and Rutkowski and co-authors ([3, 8]). In particular, results of this work cover most previous papers where the authors studied specific replication models.
We present a detailed analysis of interest rate derivatives valuation under credit risk and collateral modeling. We show how the credit and collateral extended valuation framework in Pallavicini et al (2011), and the related collateralized valuation measure, can be helpful in defining the key market rates underlying the multiple interest rate curves that characterize current interest rate markets. A key point is that spot Libor rates are to be treated as market primitives rather than being defined by no-arbitrage relationships. We formulate a consistent realistic dynamics for the different rates emerging from our analysis and compare the resulting model performances to simpler models used in the industry. We include the often neglected margin period of risk, showing how this feature may increase the impact of different rates dynamics on valuation. We point out limitations of multiple curve models with deterministic basis considering valuation of particularly sensitive products such as basis swaps. We stress that a proper wrong way risk analysis for such products requires a model with a stochastic basis and we show numerical results confirming this fact.
This paper deals with the problem of discrete-time option pricing by the mixed fractional version of Merton model with transaction costs. By a mean-self-financing delta hedging argument in a discrete-time setting, a European call option pricing formula is obtained. We also investigate the effect of the time-step $delta t$ and the Hurst parameter $H$ on our pricing option model, which reveals that these parameters have high impact on option pricing. The properties of this model are also explained.
We introduce the general arbitrage-free valuation framework for counterparty risk adjustments in presence of bilateral default risk, including default of the investor. We illustrate the symmetry in the valuation and show that the adjustment involves a long position in a put option plus a short position in a call option, both with zero strike and written on the residual net value of the contract at the relevant default times. We allow for correlation between the default times of the investor, counterparty and underlying portfolio risk factors. We use arbitrage-free stochastic dynamical models. We then specialize our analysis to Credit Default Swaps (CDS) as underlying portfolio, generalizing the work of Brigo and Chourdakis (2008) [5] who deal with unilateral and asymmetric counterparty risk. We introduce stochastic intensity models and a trivariate copula function on the default times exponential variables to model default dependence. Similarly to [5], we find that both default correlation and credit spread volatilities have a relevant and structured impact on the adjustment. Differently from [5], the two parties will now agree on the credit valuation adjustment. We study a case involving British Airways, Lehman Brothers and Royal Dutch Shell, illustrating the bilateral adjustments in concrete crisis situations.
The aim of this article is to provide a systematic analysis of the conditions such that Fourier transform valuation formulas are valid in a general framework; i.e. when the option has an arbitrary payoff function and depends on the path of the asset price process. An interplay between the conditions on the payoff function and the process arises naturally. We also extend these results to the multi-dimensional case, and discuss the calculation of Greeks by Fourier transform methods. As an application, we price options on the minimum of two assets in Levy and stochastic volatility models.