No Arabic abstract
We present a detailed analysis of interest rate derivatives valuation under credit risk and collateral modeling. We show how the credit and collateral extended valuation framework in Pallavicini et al (2011), and the related collateralized valuation measure, can be helpful in defining the key market rates underlying the multiple interest rate curves that characterize current interest rate markets. A key point is that spot Libor rates are to be treated as market primitives rather than being defined by no-arbitrage relationships. We formulate a consistent realistic dynamics for the different rates emerging from our analysis and compare the resulting model performances to simpler models used in the industry. We include the often neglected margin period of risk, showing how this feature may increase the impact of different rates dynamics on valuation. We point out limitations of multiple curve models with deterministic basis considering valuation of particularly sensitive products such as basis swaps. We stress that a proper wrong way risk analysis for such products requires a model with a stochastic basis and we show numerical results confirming this fact.
Quantum mechanics is well known to accelerate statistical sampling processes over classical techniques. In quantitative finance, statistical samplings arise broadly in many use cases. Here we focus on a particular one of such use cases, credit valuation adjustment (CVA), and identify opportunities and challenges towards quantum advantage for practical instances. To improve the depths of quantum circuits for solving such problem, we draw on various heuristics that indicate the potential for significant improvement over well-known techniques such as reversible logical circuit synthesis. In minimizing the resource requirements for amplitude amplification while maximizing the speedup gained from the quantum coherence of a noisy device, we adopt a recently developed Bayesian variant of quantum amplitude estimation using engineered likelihood functions (ELF). We perform numerical analyses to characterize the prospect of quantum speedup in concrete CVA instances over classical Monte Carlo simulations.
We develop a unified valuation theory that incorporates credit risk (defaults), collateralization and funding costs, by expanding the replication approach to a generality that has not yet been studied previously and reaching valuation when replication is not assumed. This unifying theoretical framework clarifies the relationship between the two valuation approaches: the adjusted cash flows approach pioneered for example by Brigo, Pallavicini and co-authors ([12, 13, 34]) and the classic replication approach illustrated for example by Bielecki and Rutkowski and co-authors ([3, 8]). In particular, results of this work cover most previous papers where the authors studied specific replication models.
Various valuation adjustments, or XVAs, can be written in terms of non-linear PIDEs equivalent to FBSDEs. In this paper we develop a Fourier-based method for solving FBSDEs in order to efficiently and accurately price Bermudan derivatives, including options and swaptions, with XVA under the flexible dynamics of a local Levy model: this framework includes a local volatility function and a local jump measure. Due to the unavailability of the characteristic function for such processes, we use an asymptotic approximation based on the adjoint formulation of the problem.
We consider option pricing using a discrete-time Markov switching stochastic volatility with co-jump model, which can model volatility clustering and varying mean-reversion speeds of volatility. For pricing European options, we develop a computationally efficient method for obtaining the probability distribution of average integrated variance (AIV), which is key to option pricing under stochastic-volatility-type models. Building upon the efficiency of the European option pricing approach, we are able to price an American-style option, by converting its pricing into the pricing of a portfolio of European options. Our work also provides constructive guidance for analyzing derivatives based on variance, e.g., the variance swap. Numerical results indicate our methods can be implemented very efficiently and accurately.
Trading option strangles is a highly popular strategy often used by market participants to mitigate volatility risks in their portfolios. In this paper we propose a measure of the relative value of a delta-Symmetric Strangle and compute it under the standard Black-Scholes option pricing model. This new measure accounts for the price of the strangle, relative to the Present Value of the spread between the two strikes, all expressed, after a natural re-parameterization, in terms of delta and a volatility parameter. We show that under the standard BS option pricing model, this measure of relative value is bounded by a simple function of delta only and is independent of the time to expiry, the price of the underlying security or the prevailing volatility used in the pricing model. We demonstrate how this bound can be used as a quick {it benchmark} to assess, regardless the market volatility, the duration of the contract or the price of the underlying security, the market (relative) value of the $delta-$strangle in comparison to its BS (relative) price. In fact, the explicit and simple expression for this measure and bound allows us to also study in detail the strangles exit strategy and the corresponding {it optimal} choice for a value of delta.