Do you want to publish a course? Click here

Reduction of trapped ion anomalous heating by in situ surface plasma cleaning

133   0   0.0 ( 0 )
 Added by Robert McConnell
 Publication date 2015
  fields Physics
and research's language is English




Ask ChatGPT about the research

Anomalous motional heating is a major obstacle to scalable quantum information processing with trapped ions. While the source of this heating is not yet understood, several previous studies suggest that surface contaminants may be largely responsible. We demonstrate an improvement by a factor of four in the room-temperature heating rate of a niobium surface electrode trap by in situ plasma cleaning of the trap surface. This surface treatment was performed with a simple homebuilt coil assembly and commercially-available matching network and is considerably gentler than other treatments, such as ion milling or laser cleaning, that have previously been shown to improve ion heating rates. We do not see an improvement in the heating rate when the trap is operated at cryogenic temperatures, pointing to a role of thermally-activated surface contaminants in motional heating whose activity may freeze out at low temperatures.



rate research

Read More

Anomalous heating of trapped atomic ions is a major obstacle to their use as quantum bits in a scalable quantum computer. The physical origin of this heating is not fully understood, but experimental evidence suggests that it is caused by electric-field noise emanating from the surface of the trap electrodes. In this study, we have investigated the role that adsorbates on the electrodes play by identifying contaminant overlayers, developing an in situ argon-ion beam cleaning procedure, and measuring ion heating rates before and after cleaning the trap electrodes surfaces. We find a reduction of two orders of magnitude in heating rate after cleaning.
Laser-cleaning of the electrodes in a planar micro-fabricated ion trap has been attempted using ns pulses from a tripled Nd:YAG laser at 355nm. The effect of the laser pulses at several energy density levels has been tested by measuring the heating rate of a single 40Ca+ trapped ion as a function of its secular frequency. A reduction of the electric-field noise spectral density by ~50% has been observed and a change in the frequency dependence also noticed. This is the first reported experiment where the anomalous heating phenomenon has been reduced by removing the source as opposed to reducing its thermal driving by cryogenic cooling. This technique may open the way to better control of the electrode surface quality in ion microtraps.
92 - D. A. Hite , K. S. McKay , 2021
For the past two and a half decades, anomalous heating of trapped ions from nearby electrode surfaces has continued to demonstrate unexpected results. Caused by electric-field noise, this heating of the ions motional modes remains an obstacle for scalable quantum computation with trapped ions. One of the anomalous features of this electric-field noise is the reported nonmonotonic behavior in the heating rate when a trap is incrementally cleaned by ion bombardment. Motivated by this result, the present work reports on a surface analysis of a sample ion-trap electrode treated similarly with incremental doses of Ar$^+$ ion bombardment. Kelvin probe force microscopy and x-ray photoelectron spectroscopy were used to investigate how the work functions on the electrode surface vary depending on the residual contaminant coverage between each treatment. It is shown that the as-fabricated Au electrode is covered with a hydrocarbon film that is modified after the first treatment, resulting in work functions and core-level binding energies that resemble that of atomic-like carbon on Au. The change in the spatial distributions of work functions as the coverage changes with each treatment is apparently related to the nonmonotonic heating-rate behavior previously reported.
Electric-field noise from the surfaces of ion-trap electrodes couples to the ions charge causing heating of the ions motional modes. This heating limits the fidelity of quantum gates implemented in quantum information processing experiments. The exact mechanism that gives rise to electric-field noise from surfaces is not well-understood and remains an active area of research. In this work, we detail experiments intended to measure ion motional heating rates with exchangeable surfaces positioned in close proximity to the ion, as a sensor to electric-field noise. We have prepared samples with various surface conditions, characterized in situ with scanned probe microscopy and electron spectroscopy, ranging in degrees of cleanliness and structural order. The heating-rate data, however, show no significant differences between the disparate surfaces that were probed. These results suggest that the driving mechanism for electric-field noise from surfaces is due to more than just thermal excitations alone.
Electric-field noise due to surfaces disturbs the motion of nearby trapped ions, compromising the fidelity of gate operations that are the basis for quantum computing algorithms. We present a method that predicts the effect of dielectric materials on the ions motion. Such dielectrics are integral components of ion traps. Quantitative agreement is found between a model with no free parameters and measurements of a trapped ion in proximity to dielectric mirrors. We expect that this approach can be used to optimize the design of ion-trap-based quantum computers and network nodes.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا