Do you want to publish a course? Click here

String Formation Beyond Leading Colour

95   0   0.0 ( 0 )
 Added by Peter Zeiler Skands
 Publication date 2015
  fields
and research's language is English




Ask ChatGPT about the research

We present a new model for the hadronisation of multi-parton systems, in which colour correlations beyond leading $N_C$ are allowed to influence the formation of confining potentials (strings). The multiplet structure of $SU(3)$ is combined with a minimisation of the string potential energy, to decide between which partons strings should form, allowing also for baryonic configurations (e.g., two colours can combine coherently to form an anticolour). In $e^+e^-$collisions, modifications to the leading-colour picture are small, suppressed by both colour and kinematics factors. But in $pp$ collisions, multi-parton interactions increase the number of possible subleading connections, counteracting their naive $1/N_C^2$ suppression. Moreover, those that reduce the overall string lengths are kinematically favoured. The model, which we have implemented in the PYTHIA 8 generator, is capable of reaching agreement not only with the important $left<p_perpright>(n_mathrm{charged})$ distribution but also with measured rates (and ratios) of kaons and hyperons, in both $ee$ and $pp$ collisions. Nonetheless, the shape of their $p_perp$ spectra remains challenging to explain.



rate research

Read More

We consider a holographic QCD model for light mesons beyond the leading order in the context of 5-dim gauged linear sigma model on the interval in the AdS$_5$ space. We include two dimension-6 operators in addition to the canonical bulk kinetic terms, and study chiral dynamics of $pi$, $rho$, $a_1$ and some of their KK modes. As novel features of dim-6 operators, we get non-vanishing Br$(a_1 to pi gamma)$, the electromagnetic form factor and the charge radius of a charged pion, which improve the leading order results significantly and agree well with the experimental results.
We derive a new method for initial-state collinear showering in Monte-Carlo event generators which is based on the use of unintegrated parton correlation functions. Combined with a previously derived method for final-state showering, the method solves the problem of treating both the hard scattering and the evolution kernels to be used in arbitrarily non-leading order. Although we only treat collinear showering, so that further extensions are needed for QCD, we have discovered several new results: (1) It is better to generate exact parton kinematics in the hard scattering rather than with the subsequent parton showering, and similarly at each step of the showering. (2) Parton showering is then done conditionally on the exact energy-momentum of the initiating parton. (3) We obtain a factorization for structure functions in terms of parton correlation functions so that parton kinematics can be treated exactly from the beginning. (4) We obtain two factorization properties for parton correlation functions, one in terms of ordinary parton densities and one, suitable for event generation, in terms of parton correlation functions themselves.
We review recent progress on the calculations on the inclusive forward hadron production within the saturation formalism. After introducing the concept of perturbative parton saturation and nonlinear evolution we discuss the formalism for the forward hadron production at high energy in the leading and next-to-leading order. Numerical results are presented and compared with the experimental data on forward hadron production in $dA$ and $pA$. We discuss the problem of the negativity of the NLO cross section at high transverse momenta, study its origin in detail and present possible improvements which include the corrected kinematics and the suitable choice of the rapidity cutoff.
In an earlier work we used a path integral analysis to propose a higher genus generalization of the elliptic genus. We found a cobordism invariant parametrized by Teichmuller space. Here we simplify the formula and study the behavior of our invariant under the action of the mapping class group of the Riemann surface. We find that our invariant is a modular function with multiplier just as in genus one.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا