Do you want to publish a course? Click here

Holographic QCD beyond the leading order

110   0   0.0 ( 0 )
 Added by Xiao-Hong Wu
 Publication date 2008
  fields
and research's language is English




Ask ChatGPT about the research

We consider a holographic QCD model for light mesons beyond the leading order in the context of 5-dim gauged linear sigma model on the interval in the AdS$_5$ space. We include two dimension-6 operators in addition to the canonical bulk kinetic terms, and study chiral dynamics of $pi$, $rho$, $a_1$ and some of their KK modes. As novel features of dim-6 operators, we get non-vanishing Br$(a_1 to pi gamma)$, the electromagnetic form factor and the charge radius of a charged pion, which improve the leading order results significantly and agree well with the experimental results.

rate research

Read More

We derive a new method for initial-state collinear showering in Monte-Carlo event generators which is based on the use of unintegrated parton correlation functions. Combined with a previously derived method for final-state showering, the method solves the problem of treating both the hard scattering and the evolution kernels to be used in arbitrarily non-leading order. Although we only treat collinear showering, so that further extensions are needed for QCD, we have discovered several new results: (1) It is better to generate exact parton kinematics in the hard scattering rather than with the subsequent parton showering, and similarly at each step of the showering. (2) Parton showering is then done conditionally on the exact energy-momentum of the initiating parton. (3) We obtain a factorization for structure functions in terms of parton correlation functions so that parton kinematics can be treated exactly from the beginning. (4) We obtain two factorization properties for parton correlation functions, one in terms of ordinary parton densities and one, suitable for event generation, in terms of parton correlation functions themselves.
We compute the hydrodynamic relaxation times $tau_pi$ and $tau_j$ for hot QCD at next-to-leading order in the coupling with kinetic theory. We show that certain dimensionless ratios of second-order to first-order transport coefficients obey bounds which apply whenever a kinetic theory description is possible; the computed values lie somewhat above these bounds. Strongly coupled theories with holographic duals strongly violate these bounds, highlighting their distance from a quasiparticle description.
On the basis of a renormalization group analysis of the kernel and of the solutions of the BFKL equation with subleading corrections, we propose and calculate a novel expansion of a properly defined effective eigenvalue function. We argue that in this formulation the collinear properties of the kernel are taken into account to all orders, and that the ensuing next-to-leading truncation provides a much more stable estimate of hard Pomeron and of resummed anomalous dimensions.
72 - Janko Binnewies 1997
We present new sets of fragmentation functions in next-to-leading order QCD that are determined from e+e- annihilation data of inclusive particle production. In addition to the O(alpha_s) unpolarized cross section the longitudinal cross section is also used to extract the gluon fragmentation function from e+e- annihilation data. As the O(alpha_s) vanishes for longitudinal polarized photons (or Z bosons), the O(alpha_s^2) corrections are required to reduce the scale ambiguities. Recently, P.J. Rijken and W.L. van Neerven presented the longitudinal coefficient functions to next-to-leading order. We confirm part of their results in this thesis and complete the calculation by the results for the color class C_F*T_R that must be included for a consistent comparison with LEP1 data. The complete set of coefficient functions is then used together with novel data from ALEPH to determine the fragmentation functions for charged hadrons. This set, and also sets for charged pions, kaons, and D^* mesons as well as neutral kaons published previously, can then be employed to test QCD in e+e- annihilation, photoproduction, gamma-gamma collisions, p-p_bar scattering and DIS. Finally, we suggest how the improved knowledge on the fragmentation in particular of the gluon could be used to determine the gluon and charm content of the photon.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا